山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (8): 63-71.doi: 10.6040/j.issn.1671-7554.0.2022.1479
刘腾,马迎春
LIU Teng, MA Yingchun
摘要: 目的 通过多种数据库分析ECT2在子宫内膜癌(UCEC)的表达水平、预后情况及潜在功能。 方法 利用GEO、STRING、Cytoscape筛选UCEC关键基因。联合TIMER2.0、UALCAN、肿瘤基因组图谱(TCGA)进行预后分析,运用LinkedOmics及Metascape在线分析工具行共表达基因筛选和功能富集分析。TIMER2.0分析关键基因与多肿瘤免疫浸润细胞关联性。 结果 共筛选出245个DEGs,ECT2为关键基因,其表达水平与UCEC肿瘤分级、分期及预后生存期有关联,另外发现ECT2与肿瘤增殖和免疫浸润细胞有关联。 结论 ECT2在UCEC中高表达,且与UCEC的不良预后有一定的关联性,这可能为UCEC治疗提供新靶点。
中图分类号:
[1] Matteson KA, Robison K, Jacoby VL. Opportunities for early detection of endometrial cancer in women with postmenopausal bleeding[J]. JAMA Intern Med, 2018, 178(9): 1222-1223. [2] Ledford LRC, Lockwood S. Scope and epidemiology of gynecologic cancers: an overview[J]. Semin Oncol Nurs, 2019, 35(2): 147-150. [3] Chen S, Wang LL, Sun KX, et al. LncRNA TDRG1 enhances tumorigenicity in endometrial carcinoma by binding and targeting VEGF-A protein[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(9 Pt B): 3013-3021. [4] 王铭洋, 范文生, 叶明侠, 等. 子宫内膜癌分子分型及临床应用研究进展[J]. 现代妇产科进展, 2021, 30(4): 307-310, 313. [5] Bell DW, Ellenson LH. Molecular genetics of endometrial carcinoma[J]. Annu Rev Pathol, 2019, 14: 339-367. doi: 10.1146/annurev-pathol-020117-043609. [6] Pedersen CB, Nielsen FC, Rossing M, et al. Using microarray-based subtyping methods for breast cancer in the era of high-throughput RNA sequencing[J]. Mol Oncol, 2018, 12(12): 2136-2146. [7] Vasaikar S, Straub P, Wang J, et al. LinkedOmics: analyzing multi-omics data within and across 32 cancer types[J]. Nucleic Acids Res, 2018, 46: D956-D963. [8] Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun, 2019, 10(1): 1523. [9] Irvin WP, Rice LW, Berkowitz RS. Advances in the management of endometrial adenocarcinoma. A review[J]. J Reprod Med, 2002, 47(3): 173-190. [10] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. [11] Arend RL, Jones BA, Martinez A, et al. Endometrial cancer: molecular markers and management of advanced stage disease[J]. Gynecol Oncol, 2018, 150(3): 569-580. [12] Piulats JM, Guerra E, Gil-Martín M, et al. Molecular approaches for classifying endometrial carcinoma[J]. Gynecol Oncol, 2017, 145(1): 200-207. [13] Nuñez-Olvera SI, Gallardo-Rincón D, Puente-Rivera J, et al. Autophagy machinery as a promising therapeutic target in endometrial cancer[J]. Front Oncol, 2019, 9: 1326. doi: 10.3389/fonc.2019.01326. [14] Raffone A, Travaglino A, Mascolo M, et al. Histopathological characterization of ProMisE molecular groups of endometrial cancer[J]. Gynecol Oncol, 2020, 157(1): 252-259. [15] Xu D, Wang Y, Wu J, et al. ECT2 overexpression promotes the polarization of tumor-associated macrophages in hepatocellular carcinoma via the ECT2/PLK1/PTEN pathway[J]. Cell Death Dis, 2021, 12(2): 162. [16] Zhang H, Geng Y, Sun C, et al. Upregulation of ECT2 predicts adverse clinical outcomes and increases 5-fluorouracil resistance in gastric cancer patients[J]. J Oncol, 2021, 2021: 2102890. doi: 10.1155/2021/2102890. [17] Wang H, Liu H, Li J, et al. Effect of ECT2 expression on the growth of triple-negative breast cancer cells with paclitaxel intervention[J]. Onco Targets Ther, 2020, 13: 12905-12918. doi: 10.2147/OTT.S275725. [18] Yang Q, Yu B, Sun J. TTK, CDC25A, and ESPL1 as prognostic biomarkers for endometrial cancer[J]. Biomed Res Int, 2020, 2020: 4625123. doi: 10.1155/2020/4625123. [19] Liu J, Wu Z, Sun R, et al. Using mRNAsi to identify prognostic-related genes in endometrial carcinoma based on WGCNA[J]. Life Sci, 2020, 258: 118231. doi: 10.1016/j.lfs.2020.118231. [20] Li L, Xu DB, Zhao XL, et al. Combination analysis of Bub1 and Mad2 expression in endometrial cancer: act as a prognostic factor in endometrial cancer[J]. Arch Gynecol Obstet, 2013, 288(1): 155-165. [21] Laine A, Nagelli SG, Farrington C, et al. CIP2A interacts with TopBP1 and drives basal-like breast cancer tumorigenesis[J]. Cancer Res, 2021, 81(16): 4319-4331. [22] Cao C, Han P, Liu L, et al. Epithelial cell transforming factor ECT2 is an important regulator of DNA double-strand break repair and genome stability[J]. J Biol Chem, 2021, 297(3): 101036. [23] Bai X, Yi M, Xia X, et al. Progression and prognostic value of ECT2 in non-small-cell lung cancer and its correlation with PCNA[J]. Cancer Manag Res, 2018, 10: 4039-4050. doi: 10.2147/CMAR.S170033. [24] Sun BY, Wei QQ, Liu CX, et al. ECT2 promotes proliferation and metastasis of esophageal squamous cell carcinoma via the RhoA-ERK signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2020, 24(15): 7991-8000. [25] Tong N, He Z, Ma Y, et al. Tumor associated macrophages, as the dominant immune cells, are an indispensable target for immunologically cold tumor-glioma therapy?[J]. Front Cell Dev Biol, 2021, 9: 706286. doi: 10.3389/fcell.2021.706286. [26] 许欣, 张颖, 陈超. 免疫细胞在子宫内膜癌中作用的研究进展[J]. 医学综述, 2021, 27(23): 4656-4660. XU Xin, ZHANG Ying, CHEN Chao. Research progress on the role of immune cells in endometrial cancer[J]. Medical Recapitulate, 2021, 27(23): 4656-4660. [27] Crumley S, Kurnit K, Hudgens C, et al. Identification of a subset of microsatellite-stable endometrial carcinoma with high PD-L1 and CD8+ lymphocytes[J]. Mod Pathol, 2019, 32(3): 396-404. [28] Xu D, Wang Y, Wu J, et al. ECT2 overexpression promotes the polarization of tumor-associated macrophages in hepatocellular carcinoma via the ECT2/PLK1/PTEN pathway[J]. Cell Death Dis, 2021, 12(2): 162. [29] Szczerba BM, Castro-Giner F, Vetter M, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression[J]. Nature, 2019, 566(7745): 553-557. |
[1] | 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58. |
[2] | 鹿群,赵璐璐. 子宫内膜癌、子宫内膜非典型增生保留生育功能后助孕策略[J]. 山东大学学报 (医学版), 2022, 60(9): 35-41. |
[3] | 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80. |
[4] | 蔡春芳,易丹妮,郭芝亮,何耀娟. P16蛋白与TCT、HR-HPV的相关性及对不同子宫颈病变诊断的效能[J]. 山东大学学报 (医学版), 2022, 60(1): 40-47. |
[5] | 葛少华,丁田,刘红蕊. 2型免疫在组织修复中的作用及调控机制[J]. 山东大学学报 (医学版), 2021, 59(9): 51-56. |
[6] | 张召英,马春红. 胆汁酸在肝肠疾病中的免疫调节作用[J]. 山东大学学报 (医学版), 2021, 59(9): 30-36. |
[7] | 乔宠,王婷婷. 母胎免疫调节机制的研究进展[J]. 山东大学学报 (医学版), 2021, 59(8): 24-31. |
[8] | 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9. |
[9] | 丁菲,姜洁. 姜黄素对子宫内膜癌孕激素抵抗的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 35-41. |
[10] | 耿晨,杨阳,赵月,刘浩冉,晁岚. 子宫腺肌病中差异基因筛选及Wilms tumor-1的表达[J]. 山东大学学报 (医学版), 2021, 59(4): 79-86. |
[11] | 王艳,张宇卉,胡耐博,滕广帅,周圆,白洁. 基于单细胞测序分析急性髓系白血病患者骨髓免疫微环境的特点[J]. 山东大学学报 (医学版), 2021, 59(10): 32-40. |
[12] | 李文清,叶兰,姜玉华. CDK7抑制剂THZ1对人胶质瘤细胞U251放疗的增敏性[J]. 山东大学学报 (医学版), 2021, 59(1): 8-13. |
[13] | 田宝睿,张永超,韩晓阳,田颖颖,王传玺. 利用数据库预测基因与胶质母细胞瘤的关联[J]. 山东大学学报 (医学版), 2020, 58(6): 8-13. |
[14] | 崔锡铭,王霜,许顺江,张睿,谢冰,崔冬生,赵占胜. 白藜芦醇对高糖环境下人视网膜血管内皮细胞增殖的影响及分子机制[J]. 山东大学学报 (医学版), 2019, 57(3): 19-24. |
[15] | 阎慧丽,魏慕筠,颜磊,赵跃然. FK506结合蛋白52对人子宫内膜间质细胞增殖作用的影响[J]. 山东大学学报 (医学版), 2019, 57(2): 80-87. |
|