您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (9): 30-36.doi: 10.6040/j.issn.1671-7554.0.2021.0924

• 专家综述 • 上一篇    下一篇

胆汁酸在肝肠疾病中的免疫调节作用

张召英,马春红   

  1. 山东大学基础医学院, 山东 济南 250012
  • 发布日期:2021-10-15
  • 通讯作者: 马春红. E-mail:machunhong@email.sdu.edu.cn
  • 基金资助:
    国家自然科学基金杰出青年项目(81425012);国家自然科学基金重点项目(81830017)

Immunomodulatory effects of bile acid in hepatointestinal diseases

ZHANG Zhaoying, MA Chunhong   

  1. School of Basic Medicine, Shandong University, Jinan 250012, Shandong, China
  • Published:2021-10-15

摘要: 胆汁酸是胆固醇在肝脏中分解代谢的最终产物,是胆汁的主要成分,主要用于乳化脂类物质,促进脂类物质吸收。胆汁酸代谢失调与多种肝肠疾病,包括肝细胞肝癌、结直肠癌的发生发展密切相关;针对胆汁酸的药物在临床广泛应用。免疫细胞在肝肠疾病的进程中发挥重要作用,胆汁酸与肝肠免疫关系密切,影响多种免疫细胞的分化与功能,进而影响疾病的发生发展进程。综述了胆汁酸对肝肠免疫细胞的调控作用,以期为利用胆汁酸开发新型肝肠疾病治疗手段提供帮助。

关键词: 胆汁酸, 胆汁酸受体, 肝肠炎症, 免疫稳态, 免疫细胞

Abstract: Bile acid, the final product of cholesterol catabolism in liver and the main component of bile, is critical for the emulsification and absorption of lipids. Dysregulation of bile acid metabolism is closely related to various hepatic and intestinal diseases, including hepatocellular carcinoma and colorectal cancer. At present, the clinical drugs targeting bile acid are widely utilized. Immune cells play an important role in the process of hepatointestinal diseases. Bile acid is closely related to liver and intestine immune homeostasis, affecting the differentiation and function of various immune cells, and thus affecting the occurrence and development of diseases. In this paper, we will review the regulation effect of bile acid on hepatointestinal immune cells in order to develop new therapeutic methods for hepatointestinal diseases by using bile acid.

Key words: Bile acid, Bile acid receptor, Hepatointestinal inflammation, Immune homeostasis, Immune cells

中图分类号: 

  • R575.203
[1] Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota [J]. Gut Microbes, 2020, 11(2): 158-171.
[2] Frank GS, Michael T, Peter LMJ. Bile acid receptors as targets for drug development [J]. Nat Rev Gastroenterol Hepatol, 2014, 11(1): 55-67.
[3] Schubert K, Olde Damink SWM, von Bergen M, et al. Interactions between bile salts, gut microbiota, and hepatic innate immunity [J]. Immunol Rev, 2017, 279(1): 23-35.
[4] Jiang Y, Iakova P, Jin J, et al. Farnesoid X receptor inhibits gankyrin in mouse livers and prevents development of liver cancer [J]. Hepatology, 2013, 57(3): 1098-1106.
[5] Kim I, Morimura K, Shah Y, et al. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice [J]. Carcinogenesis, 2007, 28(5): 940-946.
[6] Fu T, Coulter S, Yoshihara E, et al. FXR regulates intestinal cancer stem cell proliferation [J]. Cell, 2019, 176(5): 1098-1112.
[7] Younossi ZM, Ratziu V, Loomba R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial [J]. Lancet, 2019, 394(10215): 2184-2196.
[8] Reich M, Klindt C, Deutschmann K, et al. Role of the G protein-coupled bile acid receptor TGR5 in liver damage [J]. Dig Dis, 2017, 35(3): 235-240.
[9] Yang F, Mao C, Guo L, et al. Structural basis of GPBAR activation and bile acid recognition [J]. Nature, 2020, 587(7834): 499-504.
[10] Xie G, Wang X, Liu P, et al. Distinctly altered gut microbiota in the progression of liver disease [J]. Oncotarget, 2016, 7(15): 19355-19366.
[11] Xie G, Wang X, Huang F, et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis [J]. Int J Cancer, 2016, 139(8): 1764-1775.
[12] Bajaj JS, Kakiyama G, Zhao D, et al. Continued alcohol misuse in human cirrhosis is associated with an impaired gut-liver axis [J]. Alcohol Clin Exp Res, 2017, 41(11): 1857-1865.
[13] König A, Döring B, Mohr C, et al. Kinetics of the bile acid transporter and hepatitis B virus receptor Na+/taurocholate cotransporting polypeptide(NTCP)in hepatocytes [J]. J Hepatol, 2014, 61(4): 867-875.
[14] Kim HY, Cho HK, Choi YH, et al. Bile acids increase hepatitis B virus gene expression and inhibit interferon-alpha activity [J]. Febs J, 2010, 277(13): 2791-2802.
[15] Li Y, Tang R, Leung PSC, et al. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases [J]. Autoimmun Rev, 2017, 16(9): 885-896.
[16] Duboc Henri, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases [J]. Gut, 2013, 62(4): 531-539.
[17] Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause of colon cancer [J]. World J Surg Oncol, 2014, 12: 164. doi:10.1186/1477-7819-12-164.
[18] Ridlon JM, Bajaj JS. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics [J]. Acta Pharm Sin B, 2015, 5(2): 99-105.
[19] Chaudhari SN, Luo JN, Harris DA, et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery [J]. Cell Host Microbe, 2021, 29(3): 408-424.
[20] Li M, Cai SY, Boyer JL. Mechanisms of bile acid mediated inflammation in the liver [J]. Mol Aspects Med, 2017, 56: 45-53. doi:10.1016/j.mam.2017.06.001.
[21] Cai SY, Ouyang X, Chen Y, et al. Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response [J]. JCI Insight, 2017, 2(5): e90780.
[22] Jiang X, Lian M, Li Y, et al. The immunobiology of mucosal-associated invariant T cell(MAIT)function in primary biliary cholangitis: Regulation by cholic acid-induced Interleukin-7 [J]. J Autoimmun, 2018, 90: 64-75. doi:10.1016/j.jaut.2018.01.007.
[23] Gong Z, Zhou J, Zhao S, et al. Chenodeoxycholic acid activates NLRP3 inflammasome and contributes to cholestatic liver fibrosis [J]. Oncotarget, 2016, 7(51): 83951-83963.
[24] Hao H, Cao L, Jiang C, et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated Sepsis [J]. Cell Metab, 2017, 25(4): 856-867.
[25] Biagioli M, Carino A, Cipriani S, et al. The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis [J]. J Immunol, 2017, 199(2): 718-733.
[26] Guo C, Xie S, Chi Z, et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome [J]. Immunity, 2016, 45(4): 802-816.
[27] Perino A, Pols TW, Nomura M, et al. TGR5 reduces macrophage migration through mTOR-induced C/EBPβ differential translation [J]. J Clin Invest, 2014, 124(12): 5424-5436.
[28] Podevin P, Calmus Y, Bonnefis MT, et al. Effect of cholestasis and bile acids on interferon-induced 2',5'-adenylate synthetase and NK cell activities [J]. Gastroenterology, 1995, 108(4): 1192-1198.
[29] Xun Z, Lin J, Yu Q, et al. Taurocholic acid inhibits the response to interferon-α therapy in patients with HBeAg-positive chronic hepatitis B by impairing CD8+ T and NK cell function [J]. Cell Mol Immunol, 2021, 18(2): 461-471.
[30] Rattay S, Graf D, Kislat A, et al. Anti-inflammatory consequences of bile acid accumulation in virus-infected bile duct ligated mice [J]. PLoS One, 2018, 13(6): e0199863. doi:10.1371/journal.pone.0199863.
[31] Song X, Sun X, Oh SF, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis [J]. Nature, 2020, 577(7790): 410-415.
[32] Hang S, Paik D, Yao L, et al.Bile acid metabolites control T(H)17 and T(reg)cell differentiation [J]. Nature, 2019, 576(7785): 143-148.
[33] Campbell C, McKenney PT, Konstantinovsky D, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells [J]. Nature, 2020, 581(7809): 475-479.
[34] Pols TWH, Puchner T, Korkmaz HI, et al. Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor [J]. PLoS One, 2017, 12(5): e0176715.
[35] Ichikawa R, Takayama T, Yoneno K, et al. Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway [J]. Immunology, 2012, 136(2): 153-162.
[36] Huh JR, Leung MW, Huang P, et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity [J]. Nature, 2011, 472(7344): 486-490.
[37] Ma C, Han M, Heinrich B, Fu Q, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells [J]. Science, 2018, 360(6391): 5931.
[38] Glaser F, John C, Engel B, et al. Liver infiltrating T cells regulate bile acid metabolism in experimental cholangitis [J]. J Hepatol, 2019, 71(4): 783-792.
[1] 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71.
[2] 蔡春芳,易丹妮,郭芝亮,何耀娟. P16蛋白与TCT、HR-HPV的相关性及对不同子宫颈病变诊断的效能[J]. 山东大学学报 (医学版), 2022, 60(1): 40-47.
[3] 葛少华,丁田,刘红蕊. 2型免疫在组织修复中的作用及调控机制[J]. 山东大学学报 (医学版), 2021, 59(9): 51-56.
[4] 乔宠,王婷婷. 母胎免疫调节机制的研究进展[J]. 山东大学学报 (医学版), 2021, 59(8): 24-31.
[5] 龙宇晗,罗霞,姜洁. 妊娠期异常高脂血症2例报告并文献复习[J]. 山东大学学报 (医学版), 2021, 59(3): 103-106.
[6] 王艳,张宇卉,胡耐博,滕广帅,周圆,白洁. 基于单细胞测序分析急性髓系白血病患者骨髓免疫微环境的特点[J]. 山东大学学报 (医学版), 2021, 59(10): 30-38.
[7] 王雪芹1,岳忠勇2,李克忠1,马金凤1. 周期性机械牵张对大鼠肺泡巨噬细胞TLR4表达的影响[J]. 山东大学学报(医学版), 2013, 51(06): 40-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[2] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[3] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[4] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[5] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .
[6] 姜保东,马祥兴,王青,王茜,冯晓源,李克,于富华 . 脑CT静脉造影扫描时相及重建层厚的选择[J]. 山东大学学报(医学版), 2008, 46(11): 1084 -1086 .
[7] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[8] 王晓菊1 ,汪明明2 ,徐皖苏2 ,赵胜梅3 ,崔速南2 ,李晓迎2 ,刘春华1
. 慢性HBV活动性感染者外周血淋巴细胞
泛素mRNA的表达及临床意义

[J]. 山东大学学报(医学版), 2009, 47(02): 58 -61 .
[9] 马立新 李刚 苏雨行 张彩 张建. NKG2D在颅内肿瘤中的表达[J]. 山东大学学报(医学版), 2009, 47(5): 88 -91 .
[10] 朱晓丽1,郭淑玲1,苏磊1,冯玉新2,袁方曙1. 蠕形螨全蛋白提取及相对分子量鉴定[J]. 山东大学学报(医学版), 2014, 52(5): 58 -62 .