山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (9): 30-36.doi: 10.6040/j.issn.1671-7554.0.2021.0924
张召英,马春红
ZHANG Zhaoying, MA Chunhong
摘要: 胆汁酸是胆固醇在肝脏中分解代谢的最终产物,是胆汁的主要成分,主要用于乳化脂类物质,促进脂类物质吸收。胆汁酸代谢失调与多种肝肠疾病,包括肝细胞肝癌、结直肠癌的发生发展密切相关;针对胆汁酸的药物在临床广泛应用。免疫细胞在肝肠疾病的进程中发挥重要作用,胆汁酸与肝肠免疫关系密切,影响多种免疫细胞的分化与功能,进而影响疾病的发生发展进程。综述了胆汁酸对肝肠免疫细胞的调控作用,以期为利用胆汁酸开发新型肝肠疾病治疗手段提供帮助。
中图分类号:
[1] Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota [J]. Gut Microbes, 2020, 11(2): 158-171. [2] Frank GS, Michael T, Peter LMJ. Bile acid receptors as targets for drug development [J]. Nat Rev Gastroenterol Hepatol, 2014, 11(1): 55-67. [3] Schubert K, Olde Damink SWM, von Bergen M, et al. Interactions between bile salts, gut microbiota, and hepatic innate immunity [J]. Immunol Rev, 2017, 279(1): 23-35. [4] Jiang Y, Iakova P, Jin J, et al. Farnesoid X receptor inhibits gankyrin in mouse livers and prevents development of liver cancer [J]. Hepatology, 2013, 57(3): 1098-1106. [5] Kim I, Morimura K, Shah Y, et al. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice [J]. Carcinogenesis, 2007, 28(5): 940-946. [6] Fu T, Coulter S, Yoshihara E, et al. FXR regulates intestinal cancer stem cell proliferation [J]. Cell, 2019, 176(5): 1098-1112. [7] Younossi ZM, Ratziu V, Loomba R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial [J]. Lancet, 2019, 394(10215): 2184-2196. [8] Reich M, Klindt C, Deutschmann K, et al. Role of the G protein-coupled bile acid receptor TGR5 in liver damage [J]. Dig Dis, 2017, 35(3): 235-240. [9] Yang F, Mao C, Guo L, et al. Structural basis of GPBAR activation and bile acid recognition [J]. Nature, 2020, 587(7834): 499-504. [10] Xie G, Wang X, Liu P, et al. Distinctly altered gut microbiota in the progression of liver disease [J]. Oncotarget, 2016, 7(15): 19355-19366. [11] Xie G, Wang X, Huang F, et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis [J]. Int J Cancer, 2016, 139(8): 1764-1775. [12] Bajaj JS, Kakiyama G, Zhao D, et al. Continued alcohol misuse in human cirrhosis is associated with an impaired gut-liver axis [J]. Alcohol Clin Exp Res, 2017, 41(11): 1857-1865. [13] König A, Döring B, Mohr C, et al. Kinetics of the bile acid transporter and hepatitis B virus receptor Na+/taurocholate cotransporting polypeptide(NTCP)in hepatocytes [J]. J Hepatol, 2014, 61(4): 867-875. [14] Kim HY, Cho HK, Choi YH, et al. Bile acids increase hepatitis B virus gene expression and inhibit interferon-alpha activity [J]. Febs J, 2010, 277(13): 2791-2802. [15] Li Y, Tang R, Leung PSC, et al. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases [J]. Autoimmun Rev, 2017, 16(9): 885-896. [16] Duboc Henri, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases [J]. Gut, 2013, 62(4): 531-539. [17] Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause of colon cancer [J]. World J Surg Oncol, 2014, 12: 164. doi:10.1186/1477-7819-12-164. [18] Ridlon JM, Bajaj JS. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics [J]. Acta Pharm Sin B, 2015, 5(2): 99-105. [19] Chaudhari SN, Luo JN, Harris DA, et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery [J]. Cell Host Microbe, 2021, 29(3): 408-424. [20] Li M, Cai SY, Boyer JL. Mechanisms of bile acid mediated inflammation in the liver [J]. Mol Aspects Med, 2017, 56: 45-53. doi:10.1016/j.mam.2017.06.001. [21] Cai SY, Ouyang X, Chen Y, et al. Bile acids initiate cholestatic liver injury by triggering a hepatocyte-specific inflammatory response [J]. JCI Insight, 2017, 2(5): e90780. [22] Jiang X, Lian M, Li Y, et al. The immunobiology of mucosal-associated invariant T cell(MAIT)function in primary biliary cholangitis: Regulation by cholic acid-induced Interleukin-7 [J]. J Autoimmun, 2018, 90: 64-75. doi:10.1016/j.jaut.2018.01.007. [23] Gong Z, Zhou J, Zhao S, et al. Chenodeoxycholic acid activates NLRP3 inflammasome and contributes to cholestatic liver fibrosis [J]. Oncotarget, 2016, 7(51): 83951-83963. [24] Hao H, Cao L, Jiang C, et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated Sepsis [J]. Cell Metab, 2017, 25(4): 856-867. [25] Biagioli M, Carino A, Cipriani S, et al. The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis [J]. J Immunol, 2017, 199(2): 718-733. [26] Guo C, Xie S, Chi Z, et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome [J]. Immunity, 2016, 45(4): 802-816. [27] Perino A, Pols TW, Nomura M, et al. TGR5 reduces macrophage migration through mTOR-induced C/EBPβ differential translation [J]. J Clin Invest, 2014, 124(12): 5424-5436. [28] Podevin P, Calmus Y, Bonnefis MT, et al. Effect of cholestasis and bile acids on interferon-induced 2',5'-adenylate synthetase and NK cell activities [J]. Gastroenterology, 1995, 108(4): 1192-1198. [29] Xun Z, Lin J, Yu Q, et al. Taurocholic acid inhibits the response to interferon-α therapy in patients with HBeAg-positive chronic hepatitis B by impairing CD8+ T and NK cell function [J]. Cell Mol Immunol, 2021, 18(2): 461-471. [30] Rattay S, Graf D, Kislat A, et al. Anti-inflammatory consequences of bile acid accumulation in virus-infected bile duct ligated mice [J]. PLoS One, 2018, 13(6): e0199863. doi:10.1371/journal.pone.0199863. [31] Song X, Sun X, Oh SF, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis [J]. Nature, 2020, 577(7790): 410-415. [32] Hang S, Paik D, Yao L, et al.Bile acid metabolites control T(H)17 and T(reg)cell differentiation [J]. Nature, 2019, 576(7785): 143-148. [33] Campbell C, McKenney PT, Konstantinovsky D, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells [J]. Nature, 2020, 581(7809): 475-479. [34] Pols TWH, Puchner T, Korkmaz HI, et al. Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor [J]. PLoS One, 2017, 12(5): e0176715. [35] Ichikawa R, Takayama T, Yoneno K, et al. Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway [J]. Immunology, 2012, 136(2): 153-162. [36] Huh JR, Leung MW, Huang P, et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity [J]. Nature, 2011, 472(7344): 486-490. [37] Ma C, Han M, Heinrich B, Fu Q, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells [J]. Science, 2018, 360(6391): 5931. [38] Glaser F, John C, Engel B, et al. Liver infiltrating T cells regulate bile acid metabolism in experimental cholangitis [J]. J Hepatol, 2019, 71(4): 783-792. |
[1] | 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71. |
[2] | 蔡春芳,易丹妮,郭芝亮,何耀娟. P16蛋白与TCT、HR-HPV的相关性及对不同子宫颈病变诊断的效能[J]. 山东大学学报 (医学版), 2022, 60(1): 40-47. |
[3] | 葛少华,丁田,刘红蕊. 2型免疫在组织修复中的作用及调控机制[J]. 山东大学学报 (医学版), 2021, 59(9): 51-56. |
[4] | 乔宠,王婷婷. 母胎免疫调节机制的研究进展[J]. 山东大学学报 (医学版), 2021, 59(8): 24-31. |
[5] | 龙宇晗,罗霞,姜洁. 妊娠期异常高脂血症2例报告并文献复习[J]. 山东大学学报 (医学版), 2021, 59(3): 103-106. |
[6] | 王艳,张宇卉,胡耐博,滕广帅,周圆,白洁. 基于单细胞测序分析急性髓系白血病患者骨髓免疫微环境的特点[J]. 山东大学学报 (医学版), 2021, 59(10): 30-38. |
[7] | 王雪芹1,岳忠勇2,李克忠1,马金凤1. 周期性机械牵张对大鼠肺泡巨噬细胞TLR4表达的影响[J]. 山东大学学报(医学版), 2013, 51(06): 40-43. |
|