山东大学学报 (医学版) ›› 2020, Vol. 1 ›› Issue (7): 47-52.doi: 10.6040/j.issn.1671-7554.0.2020.0663
史爽1,2,李娟1,2,米琦1,2,王允山1,2,杜鲁涛1,2,王传新1,2
SHI Shuang1,2, LI Juan1,2, MI Qi1,2, WANG Yunshan1,2, DU Lutao1,2, WANG Chuanxin1,2
摘要: 目的 筛选与胃癌预后存在关联性的微小RNAs(miRNAs)生物标志物,构建风险评分模型用于患者预后评估。 方法 基于人类癌症和肿瘤基因图谱(TCGA)数据库下载胃癌miRNAs表达谱数据及样本相关临床信息,通过“DESeq2”软件包对miRNAs表达谱进行差异分析。采用单因素Cox回归分析和Kaplan-Meier生存分析筛选与预后存在关联性的miRNAs,并将预后miRNAs纳入多因素Cox回归分析用于预后风险评分模型的构建。通过“timeROC”软件包绘制受试者工作特征曲线(ROC),对模型效能进行评价。最后通过在线数据库对miRNAs可能结合的信使RNAs(mRNAs)进行预测,并通过基因本体(GO)、京都基因与基因组百科全书(KEGG)预测其功能。 结果 以log2 | Fold Change |>1,P<0.05为标准,筛选得到248个胃癌组织中差异表达的miRNAs。通过单因素Cox回归分析及Kaplan-Meier生存分析筛选到6个与患者总体生存率有关联性的差异表达的miRNAs,随后使用多因素Cox回归分析成功构建胃癌miRNAs预后风险评分模型,风险评分=0.048 35×miR-181b-1 +0.112 06×miR-548d-1+0.068 00×miR-675+0.075 87×miR-708+1.175 21×miR-4640+0.089 89×miR-4709。Kaplan-Meier生存曲线结果显示,风险评分高的患者预后较差(P<0.001);模型5年总体生存率ROC曲线下面积(AUC)为0.776,证明该模型能够有效预测胃癌患者预后风险。GO和KEGG功能分析结果显示,模型miRNAs分子参与多个肿瘤相关代谢通路。 结论 成功构建了miRNAs预后风险评分模型,且该模型对胃癌患者生存状态具有良好的预测效能。
中图分类号:
[1] | Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): 394-424. |
[2] | Lu Y, Tang L, Zhang Q, et al. microRNA-613 inhibits the progression of gastric cancer by targeting CDK9 [J]. Artif Cells Nanomed Biotechnol, 2018, 46(5): 980-984. |
[3] | Taniyama D, Taniyama K, Kuraoka K, et al. Long-term follow-up study of gastric adenoma; tumor-associated macrophages are associated to carcinoma development in gastric adenoma [J]. Gastric Cancer, 2017, 20(6): 929-939. |
[4] | Bernards N, Creemers GJ, Nieuwenhuijzen GA, et al. No improvement in median survival for patients with metastatic gastric cancer despite increased use of chemotherapy [J]. Ann Oncol, 2013, 24(12): 3056-3060. |
[5] | Hunt RH, Camilleri M, Crowe SE, et al. The stomach in health and disease [J]. Gut, 2015, 64(10): 1650-1668. |
[6] | Bria E, De Manzoni G, Beghelli S, et al. A clinical-biological risk stratification model for resected gastric cancer: Prognostic impact of Her2, Fhit, and APC expression status [J]. Ann Oncol, 2013, 24(3): 693-701. |
[7] | Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000-14(concord-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries [J]. Lancet, 2018, 391(10125): 1023-1075. |
[8] | Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function [J]. Cell, 2004, 116(2): 281-297. |
[9] | Iwakawa HO, Tomari Y. The functions of microRNAs: mRNA decay and translational repression [J]. Trends Cell Biol, 2015, 25(11): 651-665. |
[10] | Zhang J, Tian ZL, Zhang WT, et al. Clinicopathological and prognostic significance of miR-4317 expression in gastric cancer patients [J]. Eur Rev Med Pharmacol Sci, 2019, 23(7): 2803-2808. |
[11] | Yang X, Zhang Z, Zhang L, et al. microRNA hsa-miR-3923 serves as a diagnostic and prognostic biomarker for gastric carcinoma [J]. Sci Rep, 2020, 10(1): 4672. |
[12] | 贾晓晨, 贾勇圣, 孟文静, 等. 基于TCGA数据库建立的八基因预后模型在乳腺癌中的应用[J]. 天津医药, 2018, 46(8): 856-861. JIA Xiaochen, JIA Yongsheng, MENG Wenjing, et al. Identification of prognostic eight-gene signature model in breast cancer using integrated TCGA database [J]. Tianjin Yi Yao, 2018, 46(8): 856-861. |
[13] | 吴洁. 139例胃癌内镜诊断与病理诊断对比及分析[J]. 临床检验杂志(电子版), 2020, 9(1): 93. |
[14] | 肖恒华. 胃癌预后miRNA生物标志物的筛选及其生物学功能分析[D]. 衡阳:南华大学, 2018. |
[15] | Wang Z, Li Y, Cao J, et al. microRNA profile identifies miR-6165 could suppress gastric cancer migration and invasion by targeting STRN4 [J]. Onco Targets Ther, 2020, 13: 1859-1869. doi: 10.2147/OTT.S208024. |
[16] | Khan AQ, Ahmed EI, Elareer NR, et al. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies [J]. Cells, 2019, 8(8): 840. doi: 10.3390/cells8080840. |
[17] | Hill M, Tran N. MicroRNAs regulating microRNAs in cancer [J]. Trends Cancer, 2018, 4(7): 465-468. |
[18] | Rupaimoole R, Slack FJ. microRNA therapeutics: Towards a new era for the management of cancer and other diseases [J]. Nat Rev Drug Discov, 2017, 16(3): 203-222. |
[19] | Hu X, Zhang M, Miao J, et al. miRNA-4317 suppresses human gastric cancer cell proliferation by targeting ZNF322 [J]. Cell Biol Int, 2018, 42(8): 923-930. |
[20] | Cai H, Lin H, Cao W, et al. Downregulation of miR-519a predicts poor prognosis and contributes to tumor progression in gastric cancer [J]. Oncol Res Treat, 2020, 43(1-2): 19-26. |
[21] | Shao Q, Xu J, Guan X, et al. In vitro and in vivo effects of miRNA-19b/20a/92a on gastric cancer stem cells and the related mechanism [J]. Int J Med Sci, 2018, 15(1): 86-94. |
[22] | Ishikawa D, Yoshikawa K, Takasu C, et al. Expression level of microRNA-449a predicts the prognosis of patients with gastric cancer [J]. Anticancer Res, 2020, 40(1): 239-244. |
[23] | Liu G, Xiang T, Wu QF, et al. Long noncoding RNA h19-derived miR-675 enhances proliferation and invasion via RUNX1 in gastric cancer cells [J]. Oncol Res, 2016, 23(3): 99-107. |
[24] | Li X, Zhong X, Pan X, et al. Tumor suppressive microRNA-708 targets Notch1 to suppress cell proliferation and invasion in gastric cancer [J]. Oncol Res, 2018. doi: 10.3727/096504018X15179680859017. |
[25] | Yu M, Yu HL, Li QH, et al. miR-4709 overexpression facilitates cancer proliferation and invasion via downregulating NR3C2 and is an unfavorable prognosis factor in colon adenocarcinoma [J]. J Biochem Mol Toxicol, 2019, 33(12): e22411. doi: 10.1002/jbt.22411. |
[26] | Hu C, Yu M, Ren Y, et al. PP2A inhibition from LB100 therapy enhances daunorubicin cytotoxicity in secondary acute myeloid leukemia via miR-181b-1 upregulation [J]. Sci Rep, 2017, 7(1): 2894. doi: 10.1038/s41598-017-03058-4. |
[27] | Lv SQ, Kim YH, Giulio F, et al. Genetic alterations in microRNAs in medulloblastomas [J]. Brain Pathol, 2012, 22(2): 230-239. |
[28] | Lin S, Song S, Sun R, et al. Oncogenic circular RNA Hsa-circ-000684 interacts with microRNA-186 to upregulate ZEB1 in gastric cancer [J]. FASEB J, 2020. doi: 10.1096/fj.201903246R. |
[29] | He H, Liu J, Li W, et al. miR-210-3p inhibits proliferation and migration of C6 cells by targeting Iscu [J]. Neurochem Res, 2020. doi: 10.1007/s11064-020-03043-w. |
[1] | 郑苏,陈述花,李华,邓劼,陈春红,王晓慧,冯卫星,韩萧迪,张雨佳,李娜,李莫,方方. 脑电变化和BASED评分与54例婴儿痉挛症促肾上腺皮质激素疗效的相关性[J]. 山东大学学报 (医学版), 2022, 60(9): 91-96. |
[2] | 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112. |
[3] | 付佳,王路路,胡帅,陈哲平,刘东义,李青松,卢国栋,张贺,赵鑫,冯昌. 不同入路腰方肌阻滞对胃癌根治患者术后恢复的影响[J]. 山东大学学报 (医学版), 2022, 60(8): 50-57. |
[4] | 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49. |
[5] | 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43. |
[6] | 张玉凤,徐敏,邢秀丽,逄曙光,户克庆. 689例非ST段抬高型心肌梗死患者的临床流行病学特征[J]. 山东大学学报 (医学版), 2022, 60(7): 118-122. |
[7] | 包舒晴,杨明月,刘端瑞,汪运山,郏雁飞. NOX4在幽门螺旋杆菌诱导胃癌细胞ROS中的作用[J]. 山东大学学报 (医学版), 2022, 60(6): 19-25. |
[8] | 王景,谢艳,李培龙,杜鲁涛,王传新. GZMB基因cg16212145位点的异常甲基化芯片测定对胃癌早筛的价值[J]. 山东大学学报 (医学版), 2022, 60(6): 26-34. |
[9] | 高惠茹,杜甜甜,王允山,杜鲁涛,王传新. 基于单细胞转录组测序数据分析胃癌调节性T细胞特征[J]. 山东大学学报 (医学版), 2022, 60(5): 43-49. |
[10] | 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58. |
[11] | 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58. |
[12] | 陈立晓,英信江,陈歆维,王菲,孙臻峰,董频. 下咽鳞癌蛋白质谱鉴定及预后靶分子筛选[J]. 山东大学学报 (医学版), 2021, 59(9): 140-147. |
[13] | 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9. |
[14] | 陈丽宇,肖娟,吕仙忠,段宝敏,洪凡真. 影响孕产妇下肢深静脉血栓预后的危险因素分析[J]. 山东大学学报 (医学版), 2021, 59(7): 38-42. |
[15] | 田瑶天,王宝,李叶琴,王滕,田力文,韩波,王翠艳. 基于可解释性心脏磁共振参数的机器学习模型预测儿童心肌炎的预后[J]. 山东大学学报 (医学版), 2021, 59(7): 43-49. |
|