您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (6): 26-34.doi: 10.6040/j.issn.1671-7554.0.2021.0110

• 临床医学 • 上一篇    

GZMB基因cg16212145位点的异常甲基化芯片测定对胃癌早筛的价值

王景1,2,谢艳1,2,李培龙1,2,杜鲁涛1,2,王传新1,2   

  • 发布日期:2022-06-17
  • 通讯作者: 王传新. E-mail:cxwang@sdu.edu.cn
  • 基金资助:
    山东省重点研发计划(2019GHZ003);山东大学临床研究项目(2020SDUCRCA002)

Value of abnormal methylation of cg16212145 on GZMB gene in early screening of gastric cancer

WANG Jing1,2, XIE Yan1,2, LI Peilong1,2, DU Lutao1,2, WANG Chuanxin1,2   

  1. 1. Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China;
    2. Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan 250033, Shandong, China
  • Published:2022-06-17

摘要: 目的 获得外周血单个核细胞(PBMC)来源的胃癌特异性全基因组甲基化图谱,探讨PBMC来源的甲基化位点在胃癌早期诊断中的临床价值。 方法 采用850k甲基化芯片检测20例胃癌患者和20例健康对照者PBMC的全基因组甲基化状态,初步构建PBMC来源的胃癌特异性甲基化图谱,获得差异甲基化位点(DMPs)。对DMPs所在的基因进行基因本体(GO)分析及京都基因与基因组百科全书(KEGG)分析,进行功能预测。利用基于随机森林的多因素过滤方法对DMPs进行统计筛选。对34例Ⅰ期胃癌患者和21例健康对照者进行基于二代测序的多重目的区域甲基化富集测序,验证筛选得到的位点。 结果 甲基化芯片结果显示,与健康对照者比较,胃癌患者的PBMC具有独特的全基因组甲基化图谱,以|Δβ|>0.06、adjust P<0.05作为预筛选条件共得到5 883个DMPs,包括2 513个高甲基化位点和3 370个低甲基化位点;GO分析和KEGG分析显示,5 883个DMPs所在的2 677个基因主要与MAPK信号通路、癌症中的转录失调相关。颗粒酶B(GZMB)基因cg16212145位点在胃癌患者的PBMC中呈高甲基化水平,差异具有统计学意义(Δβ=0.080 7, adjust P=0.001)。多重目的区域甲基化富集测序结果表明,CpG位点cg16212145的异常甲基化能够区分Ⅰ期胃癌患者与健康对照者(AUC=0.807, P<0.001)。 结论 胃癌患者具有PBMC来源的特异性全基因组甲基化图谱,GZMB基因cg16212145位点在胃癌患者的PBMC中呈现高甲基化水平,在胃癌的早期筛查中具有重要临床价值。

关键词: 胃癌, DNA甲基化, 外周血单个核细胞, 早期筛查, 标志物

Abstract: Objective To obtain the specific genome-wide methylation profile of gastric cancer derived from peripheral blood mononuclear cells(PBMC), and to explore the clinical value of methylation points derived from PBMC in the early diagnosis of gastric cancer. Methods The genome-wide DNA methylation status of PBMC in 20 gastric cancer patients and 20 healthy controls was detected with Methylation850 BeadChip. The gastric cancer-specific methylation profile was constructed and differentially methylated points(DMPs)were obtained. Gene Ontology(GO)analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis were performed on the genes where DMPs were located for functional prediction. Statistical screening of DMPs was performed using a random forest-based multi-factor filtering method. Next-generation sequencing-based multiplex target region methylation enrichment sequencing was performed on 34 patients with stage I gastric cancer and 21 healthy controls to verify the selected DMPs. Results The results of methylation BeadChip showed PBMC from gastric cancer patients had unique genome-wide methylation profile. A total of 5 883 DMPs were obtained with |Δβ|>0.06 and adjust P<0.05 as pre-screening conditions, including 2 513 hypermethylated sites and 3 370 hypomethylated sites. GO analysis and KEGG analysis showed that 2 677 genes where 5 883 DMPs were located were mainly associated with MAPK signaling pathway and transcriptional dysregulation in cancer. Granzyme B(GZMB)gene cg16212145 was hypermethylated in PBMC of gastric cancer patients, and the difference was statistically significant(Δβ=0.0807, adjust P=0.001). The results of multiple target region methylation enrichment sequencing showed that abnormal methylation status of CpG site cg16212145 could distinguish patients with stage I gastric cancer from healthy controls(AUC=0.807, P<0.001). Conclusion Gastric cancer patients have a specific genome-wide methylation profile derived from PBMC. The GZMB gene cg16212145 exhibits high methylation status in PBMC of gastric cancer patients, which has important clinical value in the early screening of gastric cancer.

Key words: Gastric cancer, DNA methylation, Peripheral blood mononuclear cell, Early screening, Markers

中图分类号: 

  • R735.2
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 Cancers in 185 Countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] Sun W, Yan L. Gastric cancer: current and evolving treatment landscape [J]. Chin J Cancer, 2016, 35(1): 83. doi: 10.1186/s40880-016-0147-6.
[3] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015 [J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[4] Van Cutsem E, Sagaert X, Topal B, et al. Gastric cancer [J]. Lancet, 2016, 388(10060): 2654-2664.
[5] Panarese I, De Vita F, Ronchi A, et al. Predictive biomarkers along gastric cancer pathogenetic pathways [J]. Expert Rev Anticancer Ther, 2017, 17(5): 417-425.
[6] Vedeld HM, Goel A, Lind GE. Epigenetic biomarkers in gastrointestinal cancers: the current state and clinical perspectives [J]. Semin Cancer Biol, 2018, 51: 36-49. doi: 10.1016/j.semcancer.2017.12.004.
[7] Esteller M. Epigenetics in cancer [J]. N Engl J Med, 2008, 358(11): 1148-1159.
[8] Ren J, Lu P, Zhou X, et al. Genome-scale methylation analysis of circulating cell-Free DNA in gastric cancer patients [J]. Clin Chem, 2022, 68(2): 354-364.
[9] Tahara T, Arisawa T. DNA methylation as a molecular biomarker in gastric cancer [J]. Epigenomics, 2015, 7(3): 475-486.
[10] Zhang Y, Petropoulos S, Liu J, et al. The signature of liver cancer in immune cells DNA methylation [J]. Clin Epigenetics, 2018, 10: 8. doi: 10.1186/s13148-017-0436-1.
[11] Klumper N, Ralser DJ, Bawden EG, et al. LAG3(LAG-3, CD223)DNA methylation correlates with LAG3 expression by tumor and immune cells, immune cell infiltration, and overall survival in clear cell renal cell carcinoma [J]. J Immunother Cancer, 2020, 8(1): e000552. doi: 10.1136/jitc-2020-000552.
[12] Velotti F, Barchetta I, Cimini FA, et al. Granzyme B in inflammatory diseases: apoptosis, inflammation, extracellular matrix remodeling, epithelial-to-mesenchymal transition and fibrosis [J]. Front Immunol, 2020, 11: 587581. doi: 10.3389/fimmu.2020.587581.
[13] Turner CT, Lim D, Granville DJ. Granzyme B in skin inflammation and disease [J]. Matrix Biol, 2019, 75-76: 126-140. doi: 10.1016/j.matbio.2017.12.005.
[14] Jeong KH, Kim SK, Seo JK, et al. Association of GZMB polymorphisms and susceptibility to non-segmental vitiligo in a Korean population [J]. Sci Rep, 2021, 11(1): 397. doi: 10.1038/s41598-020-79705-0.
[15] Hiroyasu S, Zeglinski MR, Zhao H, et al. Granzyme B inhibition reduces disease severity in autoimmune blistering diseases [J]. Nat Commun, 2021, 12(1): 302. doi: 10.1038/s41467-020-20604-3.
[16] Zhang Z, Zhang Y, Xia S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity [J]. Nature, 2020, 579(7799): 415-420.
[17] Yao K, Uedo N, Kamada T, et al. Guidelines for endoscopic diagnosis of early gastric cancer [J]. Dig Endosc, 2020, 32(5): 663-698.
[18] 管鑫, 李俊垚, 王明慧, 等. 胃镜在健康体检人群胃早癌及癌前疾病筛查中的临床意义[J]. 中国内镜杂志, 2019, 25(7): 34-41. GUAN Xin, LI Junyao, WANG Minghui, et al. Clinical significance of gastroscope in healthy population screening of early gastric cancer and precancerous diseases [J]. China Journal of Endoscopy, 2019, 25(7): 34-41.
[19] Luo D, Yang Q, Wang H, et al. A predictive model for assessing prognostic risks in gastric cancer patients using gene expression and methylation data [J]. BMC Med Genomics, 2021, 14(1): 14. doi: 10.1186/s12920-020-00856-0.
[20] Wen J, Zheng T, Hu K, et al. Promoter methylation of tumor-related genes as a potential biomarker using blood samples for gastric cancer detection [J]. Oncotarget, 2017, 8(44): 77783-77793.
[21] Skvortsova K, Stirzaker C, Taberlay P. The DNA methylation landscape in cancer [J]. Essays Biochem, 2019, 63(6): 797-811.
[22] Morrow JD, Cho MH, Hersh CP, et al. DNA methylation profiling in human lung tissue identifies genes associated with COPD [J]. Epigenetics, 2016, 11(10): 730-739.
[23] Pan Y, Liu G, Zhou F, et al. DNA methylation profiles in cancer diagnosis and therapeutics [J]. Clin Exp Med, 2018, 18(1): 1-14.
[24] Li T, Chen X, Gu M, et al. Identification of the subtypes of gastric cancer based on DNA methylation and the prediction of prognosis [J]. Clin Epigenetics, 2020, 12(1): 161. doi: 10.1186/s13148-020-00940-3.
[25] Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients [J]. Nat Rev Cancer, 2011, 11(6): 426-437.
[26] van der Pol Y, Mouliere F. Toward the early detection of cancer by decoding the epigenetic and environmental fingerprints of cell-free DNA [J]. Cancer Cell, 2019, 36(4): 350-368.
[27] Machlowska J, Baj J, Sitarz M, et al. Gastric Cancer: epidemiology, risk factors, classification, genomic characteristics and treatment strategies [J]. Int J Mol Sci, 2020, 21(11): 4012. doi: 10.3390/ijms21114012.
[28] Lin C, He H, Liu H, et al. Tumour-associated macrophages-derived CXCL8 determines immune evasion through autonomous PD-L1 expression in gastric cancer [J]. Gut, 2019, 68(10): 1764-1773.
[29] Parashar S, Cheishvili D, Mahmood N, et al. DNA methylation signatures of breast cancer in peripheral T-cells [J]. BMC Cancer, 2018, 18(1): 574. doi: 10.1186/s12885-018-4482-7.
[30] 陈海燕. CA724、CEA、CA242、CA199肿瘤标志物联合检验在胃癌中的诊断价值[J]. 中国医药导报,2012, 9(31): 97-98. Chen HY. CA724、CEA、CA242、CA199 Diagnosis value of CA724, CEA, CA242, CA199 tumor markers for detecting gastric cancer [J]. Medicine Industry Information,2012, 9(31): 97-98.
[31] Konishi M, Erdem SS, Weissleder R, et al. Imaging Granzyme B activity assesses immune-mediated myocarditis [J]. Circ Res, 2015, 117(6): 502-512.
[32] Wu CH, Li J, Li L, et al. Extracellular vesicles derived from natural killer cells use multiple cytotoxic proteins and killing mechanisms to target cancer cells [J]. J Extracell Vesicles, 2019, 8(1): 1588538. doi: 10.1080/20013078.2019.1588538.
[33] Wu Y, Wan X, Jia G, et al. Aberrantly methylated and expressed genes as prognostic epigenetic biomarkers for colon cancer [J]. DNA Cell Biol, 2020, 39(11): 1961-1969.
[1] 包舒晴,杨明月,刘端瑞,汪运山,郏雁飞. NOX4在幽门螺旋杆菌诱导胃癌细胞ROS中的作用[J]. 山东大学学报 (医学版), 2022, 60(6): 19-25.
[2] 高惠茹,杜甜甜,王允山,杜鲁涛,王传新. 基于单细胞转录组测序数据分析胃癌调节性T细胞特征[J]. 山东大学学报 (医学版), 2022, 60(5): 43-49.
[3] 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58.
[4] 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58.
[5] 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9.
[6] 罗兵. EB病毒对胃癌表观遗传学的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 30-39.
[7] 孔雪,李娟,段伟丽,史爽,李培龙,杜鲁涛,毛海婷,王传新. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 70-78.
[8] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47-52.
[9] 支梦伟,江志伟,戴新娟,王刚,程伟. 加速康复外科指导下胃癌患者围手术期心率变异度的临床观察[J]. 山东大学学报 (医学版), 2020, 58(11): 85-91.
[10] 宗帅,肖东杰,刘华,郏雁飞,马晓丽,李焕杰,黎娉,郑燕,汪运山. CSN5在胃癌中的表达及与患者预后的相关性[J]. 山东大学学报(医学版), 2017, 55(7): 12-16.
[11] 徐大霞,侯楠,李晓峰,王闯,孔猛,焦广俊,陈允震. 糖皮质激素性骨质疏松症骨代谢与糖皮质激素用药时间的相关性[J]. 山东大学学报(医学版), 2017, 55(5): 103-107.
[12] 李笑莹,刘芳,车海杰,张尽晖. 肿瘤标志物预测孤立性肺结节恶性概率模型的建立与初步评价[J]. 山东大学学报(医学版), 2017, 55(4): 60-64.
[13] 周雪,王燕蓉,田龙,马良宏,颜贝,田稼,张帆,周岳,王红燕. 冷冻复苏过程对人精子印记基因SNRPN和GRB10DNA甲基化及表达的影响[J]. 山东大学学报(医学版), 2017, 55(1): 54-59.
[14] 郝姝桦,郏雁飞,郑燕,马晓丽,孔毅,黎娉,宗帅,张垚,汪运山. ARNT2在胃癌中的表达及临床意义[J]. 山东大学学报(医学版), 2016, 54(7): 6-10.
[15] 董秀红. 认知催眠疗法减轻胃癌化疗患者癌因性疲乏的疗效观察[J]. 山东大学学报(医学版), 2016, 54(7): 56-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!