您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (5): 43-49.doi: 10.6040/j.issn.1671-7554.0.2022.0121

• • 上一篇    下一篇

基于单细胞转录组测序数据分析胃癌调节性T细胞特征

高惠茹1,2,杜甜甜1,2,王允山1,2,杜鲁涛1,2,王传新1,2   

  1. 1. 山东大学第二医院检验医学中心, 山东 济南 250033;2. 山东省肿瘤标志物检测工程实验室, 山东 济南 250033
  • 发布日期:2022-06-01
  • 通讯作者: 王传新. E-mail:cxwang@sdu.edu.cn
  • 基金资助:
    山东省重点研发计划(2019GHZ003);山东大学临床研究项目(2020SDUCRCA002)

Characterization of regulatory T cells in gastric cancer based on single-cell RNA sequencing data

GAO Huiru1,2, DU Tiantian1,2, WANG Yunshan1,2, DU Lutao1,2, WANG Chuanxin1,2   

  1. 1. Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China;
    2. Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan 250033, Shandong, China
  • Published:2022-06-01

摘要: 目的 探究胃癌及胃正常组织的细胞组成,分析调节性T细胞在胃癌及胃正常组织中的差异。 方法 下载胃癌单细胞转录组测序数据并进行质控、降维聚类及细胞注释,提取调节性T细胞进行差异基因、轨迹、GSVA及细胞相互作用分析,明确正常组织和肿瘤组织来源的调节性T细胞特征。 结果 在细胞组成方面,不同患者、不同样本类型之间存在较大异质性。与正常组织相比,调节性T细胞在肿瘤组织占比更高,与细胞死亡、细胞周期等通路相关。细胞相互作用分析显示,肿瘤组织中调节性T细胞与其他细胞相互作用频率更低、强度更大,互作模式具有显著变化。 结论 调节性T细胞主要在胃癌肿瘤微环境中存在。胃癌及胃正常组织中调节性T细胞在数量、功能等方面存在显著差异。

关键词: 胃癌, 单细胞RNA测序, 细胞组成, 调节性T细胞, 细胞互作

Abstract: Objective To explore the cell composition of gastric cancer and normal gastric tissues and to analyze the difference in regulatory T cells between gastric cancer and normal gastric tissues. Methods The downloaded single-cell RNA sequencing data were subjected to quality control, dimensional-reduction clustering and cell annotation. Regulatory T cells were extracted for differential gene, developmental trajectories, GSVA and cell interaction analysis to observe the differences between regulatory T cells from normal tissues and cancer tissues. Results In terms of cell composition, there was great heterogeneity in different patients and different sample types. Compared with normal tissues, cancer tissues had higher proportion of regulatory T cells which were related to cell death, cell cycle and other pathways. Cell interaction analysis showed that regulatory T cells in cancer tissues interacted with other cells with lower frequency and greater intensity, and the interaction patterns changed significantly. Conclusion Regulatory T cells mainly exist in the microenvironment of gastric cancer. There are significant differences in the number and function of regulatory T cells between gastric cancer and normal tissues.

Key words: Gastric cancer, Single cell RNA sequencing, Cell composition, Regulatory T cells, Intercellular interaction

中图分类号: 

  • R735.2
[1] Arnold M, Abnet CC, Neale RE, et al. Global burden of 5 major types of gastrointestinal cancer [J]. Gastroenterology, 2020, 159(1): 335-349.
[2] 曹毛毛, 李贺, 孙殿钦, 等. 2000-2019年中国胃癌流行病学趋势分析[J]. 中华消化外科杂志, 2021, 20(1): 102-109. CAO Maomao, LI He, SUN Dianqin, et al. Epidemiological trend analysis of gastric cancer in China from 2000 to 2019 [J]. Chinese Journal of Digestive Surgery, 2021, 20(1): 102-109.
[3] Fan J, Slowikowski K, Zhang F. Single-cell transcriptomics in cancer: computational challenges and opportunities [J]. Exp Mol Med, 2020, 52(9): 1452-1465.
[4] Ding S, Chen X, Shen K. Single-cell RNA sequencing in breast cancer: understanding tumor heterogeneity and paving roads to individualized therapy [J]. Cancer Commun(Lond), 2020, 40(8): 329-344.
[5] Qi Z, Barrett T, Parikh AS, et al. Single-cell sequencing and its applications in head and neck cancer [J]. Oral Oncol, 2019, 99: 104441. doi: 10.1016/j.oraloncology.2019.104441.
[6] Tieng FYF, Baharudin R, Abu N, et al. Single cell transcriptome in colorectal cancer-current updates on its application in metastasis, chemoresistance and the roles of circulating tumor cells [J]. Front Pharmacol, 2020, 11: 135. doi: 10.3389/fphar.2020.00135.
[7] 包梦颖, 曾燕玉, 代艳, 等. 基于单细胞RNA测序探讨膀胱癌患者外周血单个核细胞特征的研究[J]. 广西医科大学学报, 2021, 38(3): 636-643. BAO Mengying, ZENG Yanyu, DAI Yan, et al. Study on the characteristics of peripheral blood mononuclear cells in bladder cancer patients by single cell RNA sequencing [J]. Journal of Guangxi Medical University, 2021, 38(3): 636-643.
[8] Luo Q, Fu Q, Zhang X, et al. Application of single-cell RNA sequencing in pancreatic cancer and the endocrine pancreas [J]. Adv Exp Med Biol, 2020, 1255: 143-152. doi: 10.1007/978-981-15-4494-1_12.
[9] Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy [J]. Cell Res, 2017, 27(1): 109-118.
[10] Whiteside TL. What are regulatory T cells(Treg)regulating in cancer and why? [J]. Semin Cancer Biol, 2012, 22(4): 327-334.
[11] Sathe A, Grimes SM, Lau BT, et al. Single-cell genomic characterization reveals the cellular reprogramming of the gastric tumor microenvironment [J]. Clin Cancer Res, 2020, 26(11): 2640-2653.
[12] Zhang M, Hu S, Min M, et al. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing [J]. Gut, 2021, 70(3):464-475.
[13] Zhang P, Yang M, Zhang Y, et al. Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer [J]. Cell Rep, 2019, 27(6): 1934-1947.
[14] Bassez A, Vos H, Van Dyck L, et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer [J]. Nat Med, 2021, 27(5): 820-832.
[15] Zheng L, Qin S, Si W, et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells [J]. Science, 2021, 374(6574): abe6474. doi: 10.1126/science.abe6474.
[16] Jin S, Guerrero-Juarez CF, Zhang L, et al. Inference and analysis of cell-cell communication using CellChat [J]. Nat Commun, 2021, 12(1): 1088. doi: 10.1038/s41467-021-21246-9.
[17] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[18] Xie M, Wei J, Xu J. Inducers, attractors and modulators of CD4(+)Treg cells in non-small-cell lung cancer [J]. Front Immunol, 2020, 11: 676. doi: 10.3389/fimmu.2020.00676.
[19] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation [J]. Cell, 2011, 144(5): 646-674.
[20] Kumar V, Ramnarayanan K, Sundar R, et al. Single-cell atlas of lineage states, tumor microenvironment and subtype-specific expression programs in gastric cancer [J]. Cancer Discov, 2022, 12(3): 670-691.
[21] Tanaka A, Sakaguchi S. Targeting Treg cells in cancer immunotherapy [J]. Eur J Immunol, 2019, 49(8): 1140-1146.
[22] Ahmadzadeh M, Pasetto A, Jia L, et al. Tumor-infiltrating human CD4(+)regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity [J]. Sci Immunol, 2019, 4(31): eaao4310. doi: 10.1126/sciimmunol.aao4310.
[23] Guo X, Zhang Y, Zheng L, et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing [J]. Nat Med, 2018, 24(7): 978-985.
[24] Marzagalli M, Ebelt ND, Manuel ER. Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment [J]. Semin Cancer Biol, 2019, 59: 236-250. doi: 10.1016/j.semcancer.2019.08.002.
[25] Kamiya T, Seow SV, Wong D, et al. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells [J]. J Clin Invest, 2019, 129(5): 2094-2106.
[26] Prasnikar E, Perdih A, Borisek J. All-atom simulations reveal a key interaction network in the HLA-E/NKG2A/CD94 immune complex fine-tuned by the nonameric peptide [J]. J Chem Inf Model, 2021, 61(7): 3593-3603.
[27] Stanietsky N, Simic H, Arapovic J, et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity [J]. Proc Natl Acad Sci U S A, 2009, 106(42): 17858-17863.
[28] Mathewson ND, Ashenberg O, Tirosh I, et al. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis [J]. Cell, 2021, 184(5): 1281-1298.
[1] 付佳,王路路,胡帅,陈哲平,刘东义,李青松,卢国栋,张贺,赵鑫,冯昌. 不同入路腰方肌阻滞对胃癌根治患者术后恢复的影响[J]. 山东大学学报 (医学版), 2022, 60(8): 50-57.
[2] 王景,谢艳,李培龙,杜鲁涛,王传新. GZMB基因cg16212145位点的异常甲基化芯片测定对胃癌早筛的价值[J]. 山东大学学报 (医学版), 2022, 60(6): 26-34.
[3] 包舒晴,杨明月,刘端瑞,汪运山,郏雁飞. NOX4在幽门螺旋杆菌诱导胃癌细胞ROS中的作用[J]. 山东大学学报 (医学版), 2022, 60(6): 19-25.
[4] 穆彦熹,汪文杰,陈康,姚亚龙,李金洲,魏浩旗,刘海鹏,黄泽平,陈晓. 探寻一家系短期3例胃癌的临床病理及其相关肿瘤特征[J]. 山东大学学报 (医学版), 2022, 60(11): 96-101.
[5] 马燕燕,龚瑶琴. 人脑类器官在神经发育疾病研究中的应用[J]. 山东大学学报 (医学版), 2021, 59(9): 22-29.
[6] 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9.
[7] 罗兵. EB病毒对胃癌表观遗传学的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 30-39.
[8] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47-52.
[9] 支梦伟,江志伟,戴新娟,王刚,程伟. 加速康复外科指导下胃癌患者围手术期心率变异度的临床观察[J]. 山东大学学报 (医学版), 2020, 58(11): 85-91.
[10] 王亚杰,闻蓓,施浩宇,商亮,董康迪,李乐平. 胃癌合并轻型血友病术后出血1例[J]. 山东大学学报 (医学版), 2020, 58(1): 91-93.
[11] 房鹏,王刚,赵健,刘江,王海锋,周嘉晖,江志伟. 加速康复外科减少胃癌患者术后重症监护病房住院时间的临床观察[J]. 山东大学学报 (医学版), 2019, 57(9): 28-32.
[12] 赵鸿渐,周继军,苏庆亮,赵硕,李玉明. 胃癌间充质干细胞与SGC-7901荷瘤鼠肿瘤进展的相关性[J]. 山东大学学报 (医学版), 2019, 57(9): 69-73.
[13] 李乐平,崔怀平,商亮. 加速康复外科在胃肠外科手术中的应用[J]. 山东大学学报 (医学版), 2019, 57(9): 5-11.
[14] 董昌正,周伟,李风周,臧义丰,丁印鲁. 全腹腔镜下全胃+胆囊+阑尾切除经自然腔道取标本手术1例[J]. 山东大学学报 (医学版), 2019, 57(7): 122-124.
[15] 周伟,董昌正,臧义丰,丁印鲁. 单孔加一孔腹腔镜胃癌根治+UncutRoux-en-Y吻合手术1例[J]. 山东大学学报 (医学版), 2019, 57(11): 118-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 高静,陈雯,张同霞,王小花,戴廷军,姚红,赵秀鹤,迟兆富,单培彦 . 颞叶癫痫大鼠海马线粒体细胞色素氧化酶亚基Ⅲ和Ⅳ表达的变化[J]. 山东大学学报(医学版), 2007, 45(8): 817 -820 .
[2] 肖伟玲,林亚杰,牟东珍,孙萍,梁淑娟 . 分泌型人IL-1β表达载体的构建及在H7402细胞中的表达[J]. 山东大学学报(医学版), 2008, 46(2): 119 -122 .
[3] 孙维彤,邹伟伟,李爱国,席延伟,张娜. 脂质体粒径对促进托氟啶口服吸收的影响[J]. 山东大学学报(医学版), 2007, 45(6): 639 -642 .
[4] . 干细胞标记物LGR5在结直肠癌发生发展中的表达及意义[J]. 山东大学学报(医学版), 2009, 47(8): 85 -88 .
[5] 于清梅,武玉玲,宋海岩,尹华伟,庄园 . p38丝裂原活化蛋白激酶在小鼠早期胚胎及围植入期子宫内膜的表达[J]. 山东大学学报(医学版), 2008, 46(2): 123 -127 .
[6] 于渊1,李岩1,荣风年2,梁婧1,刘晓琳1,王福立1. 自体CIK细胞治疗对卵巢癌调节性T细胞的影响[J]. 山东大学学报(医学版), 2010, 48(5): 101 -104 .
[7] 王海峰,史本康,张克勤,李永智,朱耀丰,王海新. B超检测的精索静脉直径及返流与术后精液质量的关系[J]. 山东大学学报(医学版), 2007, 45(7): 751 -752 .
[8] 张元凯,刘培来,李德强,李明. 枢椎椎板螺钉联合寰椎侧块螺钉固定技术在复杂寰枢椎脱位中的应用[J]. 山东大学学报(医学版), 2010, 48(11): 98 .
[9] 张勇,叶静,郭新星,肖水清. 牙周膜牵张成骨快速移动牙牙髓中IL-8表达的变化[J]. 山东大学学报(医学版), 2008, 46(4): 379 -381 .
[10] 林文俐1,张楠2,曲飞3,刘杰2,王婧男4,解田燕3,孙玉萍2. 肝细胞生长因子和血管内皮生长因子C在非小细胞肺癌中的共表达及与淋巴管生成的相关性[J]. 山东大学学报(医学版), 2010, 48(10): 111 -115 .