您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (5): 50-58.doi: 10.6040/j.issn.1671-7554.0.2022.0128

• • 上一篇    下一篇

基于生物信息学预测肝细胞癌预后基因

李琳琳,王凯   

  1. 山东大学齐鲁医院肝病科, 山东 济南 250012
  • 发布日期:2022-06-01
  • 通讯作者: 王凯. E-mail:wangdoc2010@163.com

Prediction of hepatocellular carcinoma prognostic genes based on bioinformatics

LI Linlin, WANG Kai   

  1. Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2022-06-01

摘要: 目的 基于生物信息学方法筛选肝癌预后基因以及探讨相关基因的作用机制。 方法 基于TCGA-LIHC数据集、基因表达综合(GEO)数据库、Ualcan 数据库研究了NUF2在肝癌组织和正常肝组织中的表达。采用 Wilcoxon 秩和检验分析 NUF2 表达与肝癌临床病理特征的关系,生存分析采用 Kaplan-Meier法,预后的单因素分析及多因素分析采用 Cox 比例风险回归模型。基于GO和KEGG通路富集分析探索其功能机制,利用STRING数据库进行NUF2蛋白互作网络构建,利用LinkedOmics 数据库分析NUF2的互作基因以探究NUF2在肝癌发生中的调控机制。此外,使用TIMER数据库和CIBERSORT研究NUF2的表达与肿瘤浸润性免疫细胞状态的关系。 结果 与正常肝组织相比,NUF2 在 肝细胞癌(HCC)组织中高表达,多变量Cox回归分析确定NUF2是HCC发生的独立危险因素,NUF2高表达患者的总生存期明显短于NUF2低表达的患者。另外,通过 STRING数据库和LinkedOmics 数据库构建了 NUF2蛋白互作基因网络,功能分析显示NUF2 及其相关基因主要参与核分裂、染色体分离、有丝分裂、化学诱导的癌变、细胞周期等过程。最后,在NUF2高表达的患者中,静息记忆CD4T细胞、活化记忆CD4T细胞、滤泡辅助T细胞、调节性T细胞(Treg)和M0巨噬细胞比例较高。 结论 HCC组织中NUF2表达水平的上调在HCC发生发展中起关键作用,高表达的NUF2可作为鉴别早期和晚期HCC的潜在诊断和预后标志物,提高诊断及时性和预后准确性,NUF2在HCC肿瘤发生过程中的免疫机制中起着关键作用。

关键词: NUF2, 肝细胞癌, 预后, 生物标志物, 肿瘤免疫

Abstract: Objective To screen hepatocellular carcinoma(HCC)prognostic genes based on bioinformatics methods and explore the action mechanism of related genes. Methods The expression of NUF2 in liver cancer tissues and normal liver tissues was studied based on the TCGA-LIHC dataset, the Gene Expression Omnibus(GEO)database, and the Ualcan database. The relationship of NUF2 expression and clinicopathological features of HCC was analyzed using the Wilcoxon rank-sum test. Survival analysis, univariate analysis of prognosis, and multivariate analysis were carried out using Kaplan-Meier method and Cox proportional risk regression model, respectively. The functional mechanisms was explored based on the GO and KEGG pathway enrichment analysis. NUF2 protein interaction network was constructed using the STRING database. The NUF2 interaction genes were analyzed using the LinkedOmics database to explore the regulatory mechanism of NUF2 in hepatocarcinogenesis. In addition, the relationship between NUF2 expression and tumor-infiltrating immune cell status was investigated using the TIMER database and CIBERSORT. Results Compared to normal liver tissues, NUF2 was significantly highly expressed in HCC tissues. Multivariable Cox regression analysis identified NUF2 as an independent risk factor in HCC, and patients with high NUF2 expression had significantly shorter overall survival than those with low NUF2 expression. In addition, the NUF2 protein interaction network was constructed by the STRING database and LinkedOmics database, and the functional analysis showed that NUF2 and its associated genes were mainly involved in nuclear division, chromosome segregation, mitosis, chemical-induced carcinogenesis, cell cycle and other processes. Finally, a high proportion of resting memory CD4T cells, activated memory CD4T cells, follicular helper T cells, regulatory T cells(Treg)and M0 macrophages was observed in patients with high NUF2 expression. Conclusion Upregulation of NUF2 in HCC tissues plays a key role in HCC development. High expression of NUF2 can serve as a potential diagnostic and prognostic marker to identify early and late HCC, improve timeliness and diagnostic and prognostic accuracy. NUF2 plays a key role in the immune mechanism during HCC tumorigenesis.

Key words: NUF2, Hepatocellular carcinoma, Prognosis, Biomarkers, Tumor immunity

中图分类号: 

  • R735.7
[1] Puccini A, Battaglin F, Iaia ML, et al. Overcoming resistance to anti-PD1 and anti-PD-L1 treatment in gastrointestinal malignancies [J]. J Immunother Cancer, 2020, 8(1): e000404.
[2] Aizarani N, Saviano A, Sagar, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors [J]. Nature, 2019, 572(7768): 199-204.
[3] Selcuk H. Prognostic factors and staging systems in hepatocellular carcinoma [J]. Exp Clin Transplant, 2017, 15(Suppl 2): 45-49.
[4] Grohmann M, Wiede F, Dodd GT. Obesity drives STAT-1-dependent NASH and STAT-3-dependent HCC [J]. Cell, 2018, 175(5): 1289-1306 e20.
[5] Petrick JL, Kelly SP, Altekruse SF, et al. Future of hepatocellular carcinoma incidence in the United States forecast through 2030 [J]. J Clin Oncol, 2016, 34(15): 1787-1794.
[6] Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data [J]. Bioinformatics, 2010, 26(1): 139-140.
[7] Gene Ontology Consortium. The Gene Ontology(GO)project in 2006 [J]. Nucleic Acids Res, 2006, 34(Database issue): D322-D326.
[8] Du J, Yuan Z, Ma Z, et al. KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model [J]. Mol Biosyst, 2014, 10(9): 2441-2447.
[9] Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles [J]. Nat Methods, 2015, 12(5): 453-457.
[10] Shah P, Wolf K, Lammerding J. Bursting the bubble-nuclear envelope rupture as a path to genomic instability? [J]. Trends Cell Biol, 2017, 27(8): 546-555.
[11] Ohnuma S, Miura K, Horii A, et al. Cancer-associated splicing variants of the CDCA1 and MSMB genes expressed in cancer cell lines and surgically resected gastric cancer tissues [J]. Surgery, 2009, 145(1): 57-68.
[12] Kaneko N, Miura K, Gu Z, et al. siRNA-mediated knockdown against CDCA1 and KNTC2, both frequently overexpressed in colorectal and gastric cancers, suppresses cell proliferation and induces apoptosis [J]. Biochem Biophys Res Commun, 2009, 390(4): 1235-1240.
[13] Hayama S, Daigo Y, Kato T, et al. Activation of CDCA1-KNTC2, members of centromere protein complex, involved in pulmonary carcinogenesis [J]. Cancer Res, 2006, 66(21): 10339-10348.
[14] Kobayashi Y, Takano A, Miyagi Y, et al. Cell division cycle-associated protein 1 overexpression is essential for the malignant potential of colorectal cancers [J]. Int J Oncol, 2014, 44(1): 69-77.
[15] Bajar BT, Lam AJ, Badiee RK, et al. Fluorescent indicators for simultaneous reporting of all four cell cycle phases [J]. Nat Methods, 2016, 13(12): 993-996.
[16] Wang Y, Tan PY, Handoko YA, et al. NUF2 is a valuable prognostic biomarker to predict early recurrence of hepatocellular carcinoma after surgical resection [J]. Int J Cancer, 2019, 145(3): 662-670.
[17] Coppell JA, Richardson PG, Soiffer R, et al. Hepatic veno-occlusive disease following stem cell transplantation: incidence, clinical course, and outcome [J]. Biol Blood Marrow Transplant, 2010, 16(2): 157-168.
[18] Yang WX, Pan YY, You CG. CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4 may be potential therapeutic targets for hepatocellular carcinoma using integrated bioinformatic analysis [J]. Biomed Res Int, 2019, 2019: 1245072.
[19] Liu X, He Y, Li F, et al. Caspase-3 promotes genetic instability and carcinogenesis [J]. Mol Cell, 2015, 58(2): 284-296.
[20] Hamalisto S, Stahl JL, Favaro E, et al. Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation [J]. Nat Commun, 2020, 11(1): 229.
[21] Zhang T, Zhou Y, Qi ST, et al. Nuf2 is required for chromosome segregation during mouse oocyte meiotic maturation [J]. Cell Cycle, 2015, 14(16): 2701-2710.
[22] Mao Y. FORMIN a link between kinetochores and microtubule ends [J]. Trends Cell Biol, 2011, 21(11): 625-629.
[23] Xie X, Jiang S, Li X. Nuf2 is a prognostic-related biomarker and correlated with immune infiltrates in hepatocellular carcinoma [J]. Front Oncol, 2021, 11: 621373. doi: 10.3389/fonc.2021.621373.
[24] Lampel J, Shapira Z. Judgmental errors,interactive norms, and the difficulty of detecting strategic surprises [J]. Organ Sci, 2001, 12(5): 599-611.
[25] Numnum TM, Makhija S, Lu B, et al. Improved anti-tumor therapy based upon infectivity-enhanced adenoviral delivery of RNA interference in ovarian carcinoma cell lines [J]. Gynecol Oncol, 2008, 108(1): 34-41.
[26] Harao M, Hirata S, Irie A, et al. HLA-A2-restricted CTL epitopes of a novel lung cancer-associated cancer testis antigen, cell division cycle associated 1, can induce tumor-reactive CTL [J]. Int J Cancer, 2008, 123(11): 2616-2625.
[27] Duffy AG, Makarova-Rusher OV, Greten TF. The case for immune-based approaches in biliary tract carcinoma [J]. Hepatology, 2016, 64(5): 1785-1791.
[28] Obara W, Sato F, Takeda K, et al. Phase I clinical trial of cell division associated 1(CDCA1)peptide vaccination for castration resistant prostate cancer [J]. Cancer Sci, 2017, 108(7): 1452-1457.
[29] Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome [J]. Science, 2006, 313(5795): 1960-1964.
[1] 郑苏,陈述花,李华,邓劼,陈春红,王晓慧,冯卫星,韩萧迪,张雨佳,李娜,李莫,方方. 脑电变化和BASED评分与54例婴儿痉挛症促肾上腺皮质激素疗效的相关性[J]. 山东大学学报 (医学版), 2022, 60(9): 91-96.
[2] 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112.
[3] 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49.
[4] 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43.
[5] 张玉凤,徐敏,邢秀丽,逄曙光,户克庆. 689例非ST段抬高型心肌梗死患者的临床流行病学特征[J]. 山东大学学报 (医学版), 2022, 60(7): 118-122.
[6] 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58.
[7] 孙振国,田辉. 加速康复外科指导下微创食管癌切除术流程优化之齐鲁实践[J]. 山东大学学报 (医学版), 2022, 60(11): 33-37.
[8] 朱永村,赵修世,孙楠楠,姚志刚,周星辰,牟坤. 前列腺透明细胞腺癌3例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(11): 102-107.
[9] 时萧寒,李华玉,李峰. 接受Stupp方案治疗的老年胶质母细胞瘤患者预后的影响因素[J]. 山东大学学报 (医学版), 2022, 60(10): 42-48.
[10] 修德健,高正文,宋婷婷,崔楠,崔静,孙健平. 生物信息学方法分析与宫颈癌有关联的基因[J]. 山东大学学报 (医学版), 2022, 60(10): 99-109.
[11] 陈立晓,英信江,陈歆维,王菲,孙臻峰,董频. 下咽鳞癌蛋白质谱鉴定及预后靶分子筛选[J]. 山东大学学报 (医学版), 2021, 59(9): 140-147.
[12] 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9.
[13] 陈丽宇,肖娟,吕仙忠,段宝敏,洪凡真. 影响孕产妇下肢深静脉血栓预后的危险因素分析[J]. 山东大学学报 (医学版), 2021, 59(7): 38-42.
[14] 田瑶天,王宝,李叶琴,王滕,田力文,韩波,王翠艳. 基于可解释性心脏磁共振参数的机器学习模型预测儿童心肌炎的预后[J]. 山东大学学报 (医学版), 2021, 59(7): 43-49.
[15] 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[2] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[3] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[4] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[5] 李洧,李道卫,叶茜,高顺翠,姜淑娟. 经支气管镜针吸活检在纵隔疾病诊断中的价值[J]. 山东大学学报(医学版), 2008, 46(11): 1063 -1065 .
[6] 王旭平,赵玲,冯玉新,商林珊,刘金成,曹伟朋,朱晓音,辛华. 绞股蓝总苷对谷氨酸诱导的胎鼠大脑皮层神经元氧化性损伤保护机制的研究[J]. 山东大学学报(医学版), 2006, 44(6): 564 -567 .
[7] 王学萍,杨洪玲. 洛汀新治疗高血压50例报告[J]. 山东大学学报(医学版), 2007, (2): 213 .
[8] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[9] 黄圣运,张东升,张世周,刘桂军,赵跃然,王来成,刘义庆 . 重组表达载体pIRES-CD、pIRES-TK的构建及其在ACC-2细胞中的表达[J]. 山东大学学报(医学版), 2007, 45(2): 117 -123 .
[10] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .