您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (9): 22-29.doi: 10.6040/j.issn.1671-7554.0.2021.0937

• 专家综述 • 上一篇    下一篇

人脑类器官在神经发育疾病研究中的应用

马燕燕,龚瑶琴   

  1. 山东大学基础医学院遗传学系 实验畸形学教育部重点实验室, 山东 济南 250012
  • 发布日期:2021-10-15
  • 通讯作者: 龚瑶琴. E-mail:yxg8@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(82171851)

Application of brain organoids in investigating neurodevelopmental diseases

MA Yanyan, GONG Yaoqin   

  1. Department of Genetics, School of Basic Medical Sciences, Shandong University, Key Laboratory of Experimental Teratology, Ministry of Education, Jinan 250012, Shandong, China
  • Published:2021-10-15

摘要: 人脑类器官是由人多能干细胞(hPSC)包括人胚胎干细胞(hESC)和人诱导多功能干细胞(hiPSC)衍生而来的三维组织,能模拟人大脑的结构和功能,作为神经发育疾病的体外研究模型独具优势。本文将对神经疾病体外模型建立和发展的历程、脑类器官在神经发育疾病研究中的应用、相关前沿技术和脑类器官技术的结合等进行综述和展望。

关键词: 多能干细胞, 脑类器官, 神经发育疾病, 单细胞RNA测序

Abstract: Human brain organoids are self-assembled three-dimensional aggregates derived from human pluripotent stem cells(hPSCs), including embryonic stem cells(ESCs)and induced pluripotent stem cells(iPSCs). Brain organoids display the structures that resemble defined brain regions and simulate specific change of neurological disease, and have become an excellent model for investigating human neurodevelopmental diseases in vitro. In this paper, we will review the recent advances in the generation of brain organoids and the application of brain organoids in modeling major neurodevelopmental diseases, as well as the combination of cutting-edge technologies with brain organoids.

Key words: Pluripotent stem cells, Brain organoid, Neurodevelopmental diseases, Single-cell RNA sequencing

中图分类号: 

  • R329.2
[1] Thapar A, Cooper M, Rutter M. Neurodevelopmental disorders [J]. Lancet Psychiatry, 2017, 4(4): 339-346.
[2] Sabitha KR, Shetty AK, Upadhya D. Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies [J]. Neurosci Biobehav Rev, 2021, 121: 201-219. doi: 10.1016/j.neubiorev.
[3] Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts [J]. Science, 1998, 282(5391): 1145-1147.
[4] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors [J]. Cell, 2006, 126(4): 663-676.
[5] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors [J]. Cell, 2007, 131(5): 861-872.
[6] Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells [J]. Science, 2007, 318(5858): 1917-1920.
[7] Zhang SC, Wernig M, Duncan ID, et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells [J]. Nat Biotechnol, 2001, 19(12): 1129-1133.
[8] Gerrard L, Rodgers L, Cui W. Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling [J]. Stem Cells, 2005, 23(9): 1234-1241.
[9] Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals [J]. Cell Stem Cell, 2008, 3(5): 519-532.
[10] Chambers SM, Fasano CA, Papapetrou EP, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling [J]. Nat Biotechnol, 2009, 27(3): 275-280.
[11] Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks [J]. Nat Protoc, 2012, 7(10): 1836-1846.
[12] Hu BY, Zhang SC. Differentiation of spinal motor neurons from pluripotent human stem cells [J]. Nat Protoc, 2009, 4(9): 1295-1304.
[13] Perrier AL, Tabar V, Barberi T, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells [J]. Proc Natl Acad Sci U S A, 2004, 101(34): 12543-12548.
[14] Liu Y, Liu H, Sauvey C, et al. Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells [J]. Nat Protoc, 2013, 8(9): 1670-1679.
[15] Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals [J]. Cell Stem Cell, 2008, 3(5): 519-532.
[16] Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture [J]. Nature, 2011, 472(7341): 51-56.
[17] Mariani J, Simonini MV, Palejev D, et al. Modeling human cortical development in vitro using induced pluripotent stem cells [J]. Proc Natl Acad Sci U S A, 2012, 109(31): 12770-12775.
[18] Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly [J]. Nature, 2013, 501(7467): 373-379.
[19] Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells [J]. Nat Protoc, 2014, 9(10): 2329-2340.
[20] Giandomenico SL, Sutcliffe M, Lancaster MA. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development [J]. Nat Protoc, 2021, 16(2): 579-602.
[21] Qian X, Jacob F, Song MM, et al. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor [J]. Nat Protoc, 2018, 13(3): 565-580.
[22] Qian X, Nguyen HN, Song MM, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV Exposure [J]. Cell, 2016, 165(5): 1238-1254.
[23] Xiang Y, Cakir B, Park IH. Generation of regionally specified human brain organoids resembling thalamus development [J]. STAR Protoc, 2020, 1(1): 100001.
[24] Xiang Y, Cakir B, Park IH. Deconstructing and reconstructing the human brain with regionally specified brain organoids [J]. Semin Cell Dev Biol, 2021, 111: 40-51. doi: 10.1016/j.semcdb.2020.05.023.
[25] Xiang Y, Tanaka Y, Cakir B, et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids [J]. Cell Stem Cell, 2019, 24(3): 487-497.
[26] Bagley JA, Reumann D, Bian S,et al. Fused cerebral organoids model interactions between brain regions [J]. Nat Methods, 2017, 14(7): 743-751.
[27] Birey F, Andersen J, Makinson CD, et al. Assembly of functionally integrated human forebrain spheroids [J]. Nature, 2017, 545(7652): 54-59.
[28] Chen A, Guo Z, Fang L, et al. Application of fused organoid models to study human brain development and neural disorders [J]. Front Cell Neurosci, 2020, 14: 133. doi:10.3389/fncel.2020.00133.
[29] Madhavan M, Nevin ZS, Shick HE, et al. Induction of myelinating oligodendrocytes in human cortical spheroids [J]. Nat Methods, 2018, 15(9): 700-706.
[30] Cakir B, Xiang Y, Tanaka Y, et al. Engineering of human brain organoids with a functional vascular-like system [J]. Nat Methods, 2019, 16(11): 1169-1175.
[31] Shi Y, Sun L, Wang M, et al. Vascularized human cortical organoids(vOrganoids)model cortical development in vivo [J]. PLoS Biol, 2020, 18(5): e3000705. doi: 10.1371/journal.pbio.3000705.
[32] Lai MC, Lombardo MV, Baron-Cohen S. Autism [J]. Lancet, 2014, 383(9920): 896-910.
[33] Mariani J, Coppola G, Zhang P, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders [J]. Cell, 2015, 162(2): 375-390.
[34] Wang P, Mokhtari R, Pedrosa E, et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells [J]. Mol Autism, 2017, 8: 11. doi: 10.1186/s13229-017-0124-1.
[35] Qian X, Su Y, Adam CD, et al. Sliced human cortical organoids for modeling distinct cortical layer formation [J]. Cell Stem Cell, 2020, 26(5): 766-781.
[36] Zhang W, Ma L, Yang M, et al. Cerebral organoid and mouse models reveal a RAB39b-PI3K-mTOR pathway-dependent dysregulation of cortical development leading to macrocephaly/autism phenotypes [J]. Genes Dev, 2020, 34(7-8): 580-597.
[37] Xu R, Brawner AT, Li S, et al. OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of down syndrome [J]. Cell Stem Cell, 2019, 24(6): 908-926.
[38] Tang XY, Xu L, Wang J, et al. DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome [J]. J Clin Invest, 2021,131(12): e135763. doi: 10.1172/JCI135763.
[39] Alcantara D, ODriscoll M. Congenital microcephaly [J]. Am J Med Genet C Semin Med Genet, 2014, 166C(2): 124-139.
[40] Devakumar D, Bamford A, Ferreira MU, et al. Infectious causes of microcephaly: epidemiology, pathogenesis, diagnosis, and management [J]. Lancet Infect Dis, 2018, 18(1): 1-13.
[41] Zhang W, Yang SL, Yang M, et al. Modeling microcephaly with cerebral organoids reveals a WDR62-CEP170-KIF2A pathway promoting cilium disassembly in neural progenitors [J]. Nat Commun, 2019, 10(1): 2612.
[42] Garcez PP, Loiola EC, Madeiro da Costa R, et al. Zika virus impairs growth in human neurospheres and brain organoids [J]. Science, 2016, 352(6287): 816-818.
[43] Cugola FR, Fernandes IR, Russo FB, et al. The Brazilian Zika virus strain causes birth defects in experimental models [J]. Nature, 2016, 534(7606): 267-271.
[44] Dang J, Tiwari SK, Lichinchi G, et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3 [J]. Cell Stem Cell, 2016, 19(2): 258-265.
[45] Krenn V, Bosone C, Burkard TR, et al. Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly [J]. Cell Stem Cell, 2021, 28(8): 1362-1379.
[46] Hagerman RJ, Berry-Kravis E, Hazlett HC, et al. Fragile X syndrome [J]. Nat Rev Dis Primers, 2017, 3: 17065. doi: 10.1038/nrdp.2017.65.
[47] Brighi C, Salaris F, Soloperto A, et al. Novel fragile X syndrome 2D and 3D brain models based on human isogenic FMRP-KO iPSCs [J]. Cell Death Dis, 2021, 12(5): 498.
[48] Bershteyn M, Nowakowski TJ, Pollen AA, et al. Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia [J]. Cell Stem Cell, 2017, 20(4): 435-449.
[49] Iefremova V, Manikakis G, Krefft O, et al. An organoid-based model of cortical development identifies non-cell-autonomous defects in wnt signaling contributing to miller-dieker syndrome [J]. Cell Rep, 2017, 19(1): 50-59.
[50] Blair JD, Hockemeyer D, Bateup HS. Genetically engineered human cortical spheroid models of tuberous sclerosis [J]. Nat Med, 2018, 24(10): 1568-1578.
[51] Mellios N, Feldman DA, Sheridan SD, et al. MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling [J]. Mol Psychiatry, 2018, 23(4): 1051-1065.
[52] Ben Jehuda R, Shemer Y, Binah O. Genome editing in induced pluripotent stem cells using CRISPR/Cas9 [J]. Stem Cell Rev Rep, 2018, 14(3): 323-336.
[53] Afshar Saber W, Sahin M. Recent advances in human stem cell-based modeling of tuberous sclerosis complex [J]. Mol Autism, 2020, 11(1): 16.
[54] Esk C, Lindenhofer D, Haendeler S, et al. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant [J]. Science, 2020, 370(6519): 935-941.
[55] Fair SR, Julian D, Hartlaub AM, et al. Electrophysiological maturation of cerebral organoids correlates with dynamic morphological and cellular development [J]. Stem Cell Reports, 2020, 15(4): 855-868.
[56] Poli D, Magliaro C, Ahluwalia A. Experimental and computational methods for the study of cerebral organoids: a review [J]. Front Neurosci, 2019, 13: 162. doi: 10.3389/fnins.2019.00162.
[57] Trujillo CA, Gao R, Negraes PD, et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development [J]. Cell Stem Cell, 2019, 25(4): 558-569.
[58] Trujillo CA, Rice ES, Schaefer NK, et al. Reintroduction of the archaic variant of NOVA1 in cortical organoids alters neurodevelopment [J]. Science, 2021, 371(6530): eaax2537.
[59] Soscia DA, Lam D, Tooker AC, et al. A flexible 3-dimensional microelectrode array for in vitro brain models [J]. Lab Chip, 2020, 20(5): 901-911.
[60] Giandomenico SL, Mierau SB, Gibbons GM, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output [J]. Nat Neurosci, 2019, 22(4): 669-679.
[61] Velasco S, Kedaigle AJ, Simmons SK, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex [J]. Nature, 2019, 570(7762): 523-527.
[62] Pollen AA, Bhaduri A, Andrews MG, et al. Establishing cerebral organoids as models of human-specific brain evolution [J]. Cell, 2019, 176(4): 743-756.
[63] Kanton S, Boyle MJ, He Z, et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development [J]. Nature, 2019, 574(7778): 418-422.
[64] Sawada T, Chater TE, Sasagawa Y, et al. Developmental excitation-inhibition imbalance underlying psychoses revealed by single-cell analyses of discordant twins-derived cerebral organoids [J]. Mol Psychiatry, 2020, 25(11): 2695-2711.
[65] Zhisong He, Tobias Gerber, Ashley Maynard, et al. Lineage recording reveals dynamics of cerebral organoid regionalization [J]. bioRxiv, 2020, 162032. doi: 10.1101/2020.06.19.162032.
[66] Dong X, Xu SB, Chen X, et al. Human cerebral organoids establish subcortical projections in the mouse brain after transplantation [J]. Mol Psychiatry, 2020, doi: 10.1038/s41380-020-00910-4.
[1] 高惠茹,杜甜甜,王允山,杜鲁涛,王传新. 基于单细胞转录组测序数据分析胃癌调节性T细胞特征[J]. 山东大学学报 (医学版), 2022, 60(5): 43-49.
[2] 郑萍,张伟道,李竞争. 多能干细胞维持遗传物质稳定性的研究进展[J]. 山东大学学报 (医学版), 2018, 56(4): 28-32.
[3] 陈文标, 喻祥琪, 戴勇. Alport综合征iPSCs差异性表达新小核糖核苷酸的分析[J]. 山东大学学报(医学版), 2015, 53(9): 80-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姜保东,马祥兴,王青,王茜,冯晓源,李克,于富华 . 脑CT静脉造影扫描时相及重建层厚的选择[J]. 山东大学学报(医学版), 2008, 46(11): 1084 -1086 .
[2] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[3] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[4] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[5] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[6] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[7] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .
[8] 刘海春 张剑锋 陈允震. 骨质疏松大鼠股骨生物力学特性与骨胶原质量变化的相关研究[J]. 山东大学学报(医学版), 2009, 47(5): 42 -45 .
[9] 冯复利1,魏树珍2,张永欢3,李莉1,陈融1,李瑞峰1. 胰岛素抵抗大鼠高死亡率与Klotho表达关系的研究[J]. 山东大学学报(医学版), 2010, 48(6): 5 -8 .
[10] 李洧,李道卫,叶茜,高顺翠,姜淑娟. 经支气管镜针吸活检在纵隔疾病诊断中的价值[J]. 山东大学学报(医学版), 2008, 46(11): 1063 -1065 .