山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (9): 22-29.doi: 10.6040/j.issn.1671-7554.0.2021.0937
马燕燕,龚瑶琴
MA Yanyan, GONG Yaoqin
摘要: 人脑类器官是由人多能干细胞(hPSC)包括人胚胎干细胞(hESC)和人诱导多功能干细胞(hiPSC)衍生而来的三维组织,能模拟人大脑的结构和功能,作为神经发育疾病的体外研究模型独具优势。本文将对神经疾病体外模型建立和发展的历程、脑类器官在神经发育疾病研究中的应用、相关前沿技术和脑类器官技术的结合等进行综述和展望。
中图分类号:
[1] Thapar A, Cooper M, Rutter M. Neurodevelopmental disorders [J]. Lancet Psychiatry, 2017, 4(4): 339-346. [2] Sabitha KR, Shetty AK, Upadhya D. Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies [J]. Neurosci Biobehav Rev, 2021, 121: 201-219. doi: 10.1016/j.neubiorev. [3] Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts [J]. Science, 1998, 282(5391): 1145-1147. [4] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors [J]. Cell, 2006, 126(4): 663-676. [5] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors [J]. Cell, 2007, 131(5): 861-872. [6] Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells [J]. Science, 2007, 318(5858): 1917-1920. [7] Zhang SC, Wernig M, Duncan ID, et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells [J]. Nat Biotechnol, 2001, 19(12): 1129-1133. [8] Gerrard L, Rodgers L, Cui W. Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling [J]. Stem Cells, 2005, 23(9): 1234-1241. [9] Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals [J]. Cell Stem Cell, 2008, 3(5): 519-532. [10] Chambers SM, Fasano CA, Papapetrou EP, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling [J]. Nat Biotechnol, 2009, 27(3): 275-280. [11] Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks [J]. Nat Protoc, 2012, 7(10): 1836-1846. [12] Hu BY, Zhang SC. Differentiation of spinal motor neurons from pluripotent human stem cells [J]. Nat Protoc, 2009, 4(9): 1295-1304. [13] Perrier AL, Tabar V, Barberi T, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells [J]. Proc Natl Acad Sci U S A, 2004, 101(34): 12543-12548. [14] Liu Y, Liu H, Sauvey C, et al. Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells [J]. Nat Protoc, 2013, 8(9): 1670-1679. [15] Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals [J]. Cell Stem Cell, 2008, 3(5): 519-532. [16] Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture [J]. Nature, 2011, 472(7341): 51-56. [17] Mariani J, Simonini MV, Palejev D, et al. Modeling human cortical development in vitro using induced pluripotent stem cells [J]. Proc Natl Acad Sci U S A, 2012, 109(31): 12770-12775. [18] Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly [J]. Nature, 2013, 501(7467): 373-379. [19] Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells [J]. Nat Protoc, 2014, 9(10): 2329-2340. [20] Giandomenico SL, Sutcliffe M, Lancaster MA. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development [J]. Nat Protoc, 2021, 16(2): 579-602. [21] Qian X, Jacob F, Song MM, et al. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor [J]. Nat Protoc, 2018, 13(3): 565-580. [22] Qian X, Nguyen HN, Song MM, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV Exposure [J]. Cell, 2016, 165(5): 1238-1254. [23] Xiang Y, Cakir B, Park IH. Generation of regionally specified human brain organoids resembling thalamus development [J]. STAR Protoc, 2020, 1(1): 100001. [24] Xiang Y, Cakir B, Park IH. Deconstructing and reconstructing the human brain with regionally specified brain organoids [J]. Semin Cell Dev Biol, 2021, 111: 40-51. doi: 10.1016/j.semcdb.2020.05.023. [25] Xiang Y, Tanaka Y, Cakir B, et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids [J]. Cell Stem Cell, 2019, 24(3): 487-497. [26] Bagley JA, Reumann D, Bian S,et al. Fused cerebral organoids model interactions between brain regions [J]. Nat Methods, 2017, 14(7): 743-751. [27] Birey F, Andersen J, Makinson CD, et al. Assembly of functionally integrated human forebrain spheroids [J]. Nature, 2017, 545(7652): 54-59. [28] Chen A, Guo Z, Fang L, et al. Application of fused organoid models to study human brain development and neural disorders [J]. Front Cell Neurosci, 2020, 14: 133. doi:10.3389/fncel.2020.00133. [29] Madhavan M, Nevin ZS, Shick HE, et al. Induction of myelinating oligodendrocytes in human cortical spheroids [J]. Nat Methods, 2018, 15(9): 700-706. [30] Cakir B, Xiang Y, Tanaka Y, et al. Engineering of human brain organoids with a functional vascular-like system [J]. Nat Methods, 2019, 16(11): 1169-1175. [31] Shi Y, Sun L, Wang M, et al. Vascularized human cortical organoids(vOrganoids)model cortical development in vivo [J]. PLoS Biol, 2020, 18(5): e3000705. doi: 10.1371/journal.pbio.3000705. [32] Lai MC, Lombardo MV, Baron-Cohen S. Autism [J]. Lancet, 2014, 383(9920): 896-910. [33] Mariani J, Coppola G, Zhang P, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders [J]. Cell, 2015, 162(2): 375-390. [34] Wang P, Mokhtari R, Pedrosa E, et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells [J]. Mol Autism, 2017, 8: 11. doi: 10.1186/s13229-017-0124-1. [35] Qian X, Su Y, Adam CD, et al. Sliced human cortical organoids for modeling distinct cortical layer formation [J]. Cell Stem Cell, 2020, 26(5): 766-781. [36] Zhang W, Ma L, Yang M, et al. Cerebral organoid and mouse models reveal a RAB39b-PI3K-mTOR pathway-dependent dysregulation of cortical development leading to macrocephaly/autism phenotypes [J]. Genes Dev, 2020, 34(7-8): 580-597. [37] Xu R, Brawner AT, Li S, et al. OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of down syndrome [J]. Cell Stem Cell, 2019, 24(6): 908-926. [38] Tang XY, Xu L, Wang J, et al. DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome [J]. J Clin Invest, 2021,131(12): e135763. doi: 10.1172/JCI135763. [39] Alcantara D, ODriscoll M. Congenital microcephaly [J]. Am J Med Genet C Semin Med Genet, 2014, 166C(2): 124-139. [40] Devakumar D, Bamford A, Ferreira MU, et al. Infectious causes of microcephaly: epidemiology, pathogenesis, diagnosis, and management [J]. Lancet Infect Dis, 2018, 18(1): 1-13. [41] Zhang W, Yang SL, Yang M, et al. Modeling microcephaly with cerebral organoids reveals a WDR62-CEP170-KIF2A pathway promoting cilium disassembly in neural progenitors [J]. Nat Commun, 2019, 10(1): 2612. [42] Garcez PP, Loiola EC, Madeiro da Costa R, et al. Zika virus impairs growth in human neurospheres and brain organoids [J]. Science, 2016, 352(6287): 816-818. [43] Cugola FR, Fernandes IR, Russo FB, et al. The Brazilian Zika virus strain causes birth defects in experimental models [J]. Nature, 2016, 534(7606): 267-271. [44] Dang J, Tiwari SK, Lichinchi G, et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3 [J]. Cell Stem Cell, 2016, 19(2): 258-265. [45] Krenn V, Bosone C, Burkard TR, et al. Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly [J]. Cell Stem Cell, 2021, 28(8): 1362-1379. [46] Hagerman RJ, Berry-Kravis E, Hazlett HC, et al. Fragile X syndrome [J]. Nat Rev Dis Primers, 2017, 3: 17065. doi: 10.1038/nrdp.2017.65. [47] Brighi C, Salaris F, Soloperto A, et al. Novel fragile X syndrome 2D and 3D brain models based on human isogenic FMRP-KO iPSCs [J]. Cell Death Dis, 2021, 12(5): 498. [48] Bershteyn M, Nowakowski TJ, Pollen AA, et al. Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia [J]. Cell Stem Cell, 2017, 20(4): 435-449. [49] Iefremova V, Manikakis G, Krefft O, et al. An organoid-based model of cortical development identifies non-cell-autonomous defects in wnt signaling contributing to miller-dieker syndrome [J]. Cell Rep, 2017, 19(1): 50-59. [50] Blair JD, Hockemeyer D, Bateup HS. Genetically engineered human cortical spheroid models of tuberous sclerosis [J]. Nat Med, 2018, 24(10): 1568-1578. [51] Mellios N, Feldman DA, Sheridan SD, et al. MeCP2-regulated miRNAs control early human neurogenesis through differential effects on ERK and AKT signaling [J]. Mol Psychiatry, 2018, 23(4): 1051-1065. [52] Ben Jehuda R, Shemer Y, Binah O. Genome editing in induced pluripotent stem cells using CRISPR/Cas9 [J]. Stem Cell Rev Rep, 2018, 14(3): 323-336. [53] Afshar Saber W, Sahin M. Recent advances in human stem cell-based modeling of tuberous sclerosis complex [J]. Mol Autism, 2020, 11(1): 16. [54] Esk C, Lindenhofer D, Haendeler S, et al. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant [J]. Science, 2020, 370(6519): 935-941. [55] Fair SR, Julian D, Hartlaub AM, et al. Electrophysiological maturation of cerebral organoids correlates with dynamic morphological and cellular development [J]. Stem Cell Reports, 2020, 15(4): 855-868. [56] Poli D, Magliaro C, Ahluwalia A. Experimental and computational methods for the study of cerebral organoids: a review [J]. Front Neurosci, 2019, 13: 162. doi: 10.3389/fnins.2019.00162. [57] Trujillo CA, Gao R, Negraes PD, et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development [J]. Cell Stem Cell, 2019, 25(4): 558-569. [58] Trujillo CA, Rice ES, Schaefer NK, et al. Reintroduction of the archaic variant of NOVA1 in cortical organoids alters neurodevelopment [J]. Science, 2021, 371(6530): eaax2537. [59] Soscia DA, Lam D, Tooker AC, et al. A flexible 3-dimensional microelectrode array for in vitro brain models [J]. Lab Chip, 2020, 20(5): 901-911. [60] Giandomenico SL, Mierau SB, Gibbons GM, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output [J]. Nat Neurosci, 2019, 22(4): 669-679. [61] Velasco S, Kedaigle AJ, Simmons SK, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex [J]. Nature, 2019, 570(7762): 523-527. [62] Pollen AA, Bhaduri A, Andrews MG, et al. Establishing cerebral organoids as models of human-specific brain evolution [J]. Cell, 2019, 176(4): 743-756. [63] Kanton S, Boyle MJ, He Z, et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development [J]. Nature, 2019, 574(7778): 418-422. [64] Sawada T, Chater TE, Sasagawa Y, et al. Developmental excitation-inhibition imbalance underlying psychoses revealed by single-cell analyses of discordant twins-derived cerebral organoids [J]. Mol Psychiatry, 2020, 25(11): 2695-2711. [65] Zhisong He, Tobias Gerber, Ashley Maynard, et al. Lineage recording reveals dynamics of cerebral organoid regionalization [J]. bioRxiv, 2020, 162032. doi: 10.1101/2020.06.19.162032. [66] Dong X, Xu SB, Chen X, et al. Human cerebral organoids establish subcortical projections in the mouse brain after transplantation [J]. Mol Psychiatry, 2020, doi: 10.1038/s41380-020-00910-4. |
[1] | 高惠茹,杜甜甜,王允山,杜鲁涛,王传新. 基于单细胞转录组测序数据分析胃癌调节性T细胞特征[J]. 山东大学学报 (医学版), 2022, 60(5): 43-49. |
[2] | 郑萍,张伟道,李竞争. 多能干细胞维持遗传物质稳定性的研究进展[J]. 山东大学学报 (医学版), 2018, 56(4): 28-32. |
[3] | 陈文标, 喻祥琪, 戴勇. Alport综合征iPSCs差异性表达新小核糖核苷酸的分析[J]. 山东大学学报(医学版), 2015, 53(9): 80-85. |
|