您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (9): 15-21.doi: 10.6040/j.issn.1671-7554.0.2021.0874

• 专家综述 • 上一篇    下一篇

组织定居性记忆T细胞在肾脏中的维持与作用

易凡,李亮   

  1. 山东大学基础医学院药理学系, 山东 济南 250012
  • 发布日期:2021-10-15
  • 通讯作者: 易凡. E-mail:fanyi@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(82090020,82090024,91949202);山东省自然科学基金(ZR2019ZD40)

Maintenance and function of tissue resident memory T cells in the kidney

YI Fan, LI Liang   

  1. Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, Shandong, China
  • Published:2021-10-15

摘要: 组织定居性记忆T细胞(TRM)是新近发现的一类不参与体循环,驻留在器官的T淋巴细胞。TRM具有独特的分化调控机制和免疫调节功能,在多种疾病的发生发展中发挥重要作用,有望成为新的治疗靶点。有研究发现TRM存在于肾脏中,因此本文将围绕TRM在肾脏中的形成、表型、维持和作用等方面,综述TRM在肾脏中的最新研究进展。

关键词: 组织定居性记忆T细胞, 肾脏, 免疫微环境

Abstract: Tissue resident memory T cells (T-RM), a recently discovered type of T lymphocytes, do not participate in systemic circulation but reside in organs. T-RM possess a unique differentiation regulation mechanism and contribute to immunomodulatory effect. They play an important role in the occurrence and development of many kinds of diseases and are expected to become a new therapeutic target. T-RM have also been found in the kidney. This review will focus on the formation, biological characteristics and maintenance of T-RM in the kidney and the role of T-RMin kidney diseases.

中图分类号: 

  • R692
[1] Jiang X, Clark RA, Liu L, et al. Skin infection generates non-migratory memory CD8+ T(RM)cells providing global skin immunity [J]. Nature, 2012, 483(7388): 227-231.
[2] Glennie ND, Yeramilli VA, Beiting DP, et al. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection [J]. J Exp Med, 2015, 212(9): 1405-1414.
[3] Pizzolla A, Nguyen THO, Smith JM, et al. Resident memory CD8(+)T cells in the upper respiratory tract prevent pulmonary influenza virus infection [J]. Sci Immunol, 2017, 2(12): eaam6970. doi: 10.1126/sciimmunol.aam6970.
[4] Rodriguez-Garcia M, Shen Z, Fortier JM, et al. Differential cytotoxic function of resident and non-resident CD8+ T cells in the human female reproductive tract before and after menopause [J]. Front Immunol, 2020, 11: 1096. doi: 10.3389/fimmu.2020.01096.
[5] Zundler S, Becker E, Spocinska M, et al. Hobit- and Blimp-1-driven CD4(+)tissue-resident memory T cells control chronic intestinal inflammation [J]. Nat Immunol, 2019, 20(3): 288-300.
[6] Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defence [J]. Nat Rev Immunol, 2016, 16(2): 79-89.
[7] Okla K, Farber DL, Zou W. Tissue-resident memory T cells in tumor immunity and immunotherapy [J]. J Exp Med, 2021, 218(4):e20201605. doi: 10.1084/jem.20201605.
[8] Mueller SN, Gebhardt T, Carbone FR, et al. Memory T cell subsets, migration patterns, and tissue residence [J]. Annu Rev Immunol, 2013, 31: 137-161. doi: 10.1146/annurev-immunol-032712-095954.
[9] Schenkel JM, Masopust D. Tissue-resident memory T cells [J]. Immunity, 2014, 41(6): 886-897.
[10] Gebhardt T, Mueller SN, HEATH WR, et al. Peripheral tissue surveillance and residency by memory T cells [J]. Trends Immunol, 2013, 34(1): 27-32.
[11] Hogan RJ, Usherwood EJ, Zhong W, et al. Activated antigen-specific CD8+ T cells persist in the lungs following recovery from respiratory virus infections [J]. J Immunol, 2001, 166(3): 1813-1822.
[12] Masopust D, Vezys V, Marzo AL, et al. Preferential localization of effector memory cells in nonlymphoid tissue [J]. Science, 2001, 291(5512): 2413-2417.
[13] Gebhardt T, Wakim LM, Eidsmo L, et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus [J]. Nat Immunol, 2009, 10(5): 524-530.
[14] Teijaro JR, Turner D, Pham Q, et al. Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection [J]. J Immunol, 2011, 187(11): 5510-5514.
[15] Casey KA, Fraser KA, Schenkel JM, et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues [J]. J Immunol, 2012, 188(10): 4866-4875.
[16] Shin H, Iwasaki A. Tissue-resident memory T cells [J]. Immunol Rev, 2013, 255(1): 165-181.
[17] Intlekofer AM, Takemoto N, Wherry EJ, et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin [J]. Nat Immunol, 2005, 6(12): 1236-1244.
[18] Bromley SK, Thomas SY, Luster AD. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics [J]. Nat Immunol, 2005, 6(9): 895-901.
[19] Skon CN, Lee JY, Anderson KG, et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells [J]. Nat Immunol, 2013, 14(12): 1285-1293.
[20] Mackay LK, Braun A, Macleod BL, et al. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention [J]. J Immunol, 2015, 194(5): 2059-2063.
[21] Mackay LK, Rahimpour A, Ma JZ, et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin [J]. Nat Immunol, 2013, 14(12): 1294-1301. doi: 10.1038/ni.2744.
[22] Stelma F, De Niet A, Sinnige MJ, et al. Human intrahepatic CD69 + CD8+ T cells have a tissue resident memory T cell phenotype with reduced cytolytic capacity [J]. Sci Rep, 2017, 7(1): 6172. doi: 10.1038/s41598-017-06352-3.
[23] Ma C, Mishra S, Demel EL, et al. TGF-beta controls the formation of kidney-resident T cells via promoting effector T cell extravasation [J]. J Immunol, 2017, 198(2): 749-756.
[24] Soukou S, Huber S, Krebs CF. T cell plasticity in renal autoimmune disease [J]. Cell Tissue Res, 2021,1-11. doi: 10.1007/s00441-021-03466-z.
[25] Suarez-Fueyo A, Bradley SJ, Klatzmann D, et al. T cells and autoimmune kidney disease [J]. Nat Rev Nephrol, 2017, 13(6): 329-343.
[26] Li Q, Wang Z, Zhang Y, et al. NLRC5 deficiency protects against acute kidney injury in mice by mediating carcinoembryonic antigen-related cell adhesion molecule 1 signaling [J]. Kidney Int, 2018, 94(3): 551-566.
[27] Cibrian D, Sanchez-Madrid F. CD69: from activation marker to metabolic gatekeeper [J]. Eur J Immunol, 2017, 47(6): 946-953.
[28] Topham DJ, Reilly EC. Tissue-resident memory CD8+T cells: from phenotype to function [J]. Front Immunol, 2018, 9: 515. doi: 10.3389/fimmu.2018.00515.
[29] Van Der Putten C, Remmerswaal EBM, Terpstra ML, et al. CD8 and CD4 T Cell Populations in Human Kidneys [J]. Cells, 2021, 10(2):288. doi: 10.3390/cells10020288.
[30] Dornieden T, Sattler A, Pascual-Reguant A, et al. Signatures and specificity of tissue-resident lymphocytes identified in human renal peri-tumor and tumor tissue [J]. J Am Soc Nephrol, 2021, 32(9):2223-2241.
[31] Mackay LK, Minnich M, Kragten NA, et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes [J]. Science, 2016, 352(6284): 459- 463.
[32] Milner JJ, Toma C, Yu B, et al. Runx3 programs CD8+T cell residency in non-lymphoid tissues and tumours [J]. Nature, 2017, 552(7684): 253-257.
[33] Van Aalderen MC, Remmerswaal EB, Heutinck KM, et al. Clinically relevant reactivation of polyomavirus BK(BKPyV)in HLA-A02-Positive renal transplant recipients is associated with impaired effector-memory differentiation of BKPyV-specific CD8+ T cells [J]. PLoS Pathog, 2016, 12(10): e1005903. doi: 10.1371/journal.ppat.1005903.
[34] Iijima N, Iwasaki A. Tissue instruction for migration and retention of TRM cells [J]. Trends Immunol, 2015, 36(9): 556-564.
[35] Turner JE, Becker M, Mittrucker HW, et al. Tissue-resident lymphocytes in the kidney [J]. J Am Soc Nephrol, 2018, 29(2): 389-399.
[36] Mackay LK, Wynne-Jones E, Freestone D, et al. T-box transcription factors combine with the cytokines TGF-beta and IL-15 to control tissue-resident memory T cell fate [J]. Immunity, 2015, 43(6): 1101-1111.
[37] Jabri B, Abadie V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction [J]. Nat Rev Immunol, 2015, 15(12): 771-783.
[38] Pallett LJ, Davies J, Colbeck EJ, et al. IL-2(high)tissue-resident T cells in the human liver: Sentinels for hepatotropic infection [J]. J Exp Med, 2017, 214(6): 1567-1580.
[39] Weiler M, Rogashev B, Einbinder T, et al. Interleukin-15, a leukocyte activator and growth factor, is produced by cortical tubular epithelial cells [J]. J Am Soc Nephrol, 1998, 9(7): 1194-1201.
[40] Schenkel JM, Fraser KA, Casey KA, et al. IL-15-Independent maintenance of tissue-resident and boosted effector memory CD8 T cells [J]. J Immunol, 2016, 196(9): 3920-3926.
[41] Li MO, Flavell RA. TGF-beta: a master of all T cell trades [J]. Cell, 2008, 134(3): 392-404.
[42] Zhou M, Guo C, Li X, et al. JAK/STAT signaling controls the fate of CD8+CD103+ tissue-resident memory T cell in lupus nephritis [J]. J Autoimmun, 2020, 109: 102424. doi: 10.1016/j.jaut.2020.102424.
[43] Wu H, Liao W, Li Q, et al. Pathogenic role of tissue-resident memory T cells in autoimmune diseases [J]. Autoimmun Rev, 2018, 17(9): 906-911.
[44] Willemsen M, Linkute R, Luiten RM, et al. Skin-resident memory T cells as a potential new therapeutic target in vitiligo and melanoma [J]. Pigment Cell Melanoma Res, 2019, 32(5): 612-622.
[45] Park S, Park J, Kim E, et al. The capicua/ETS translocation variant 5 axis regulates liver-resident memory CD8+T-cell development and the pathogenesis of liver injury [J]. Hepatology, 2019, 70(1): 358-371.
[46] Jung J, Lee JS, Kim YG, et al. Synovial fluid CD69+CD8+ T cells with tissue-resident phenotype mediate perforin-dependent citrullination in rheumatoid arthritis [J]. Clin Transl Immunology, 2020, 9(6): e1140. doi: 10.1002/cti2.1140.
[47] Winchester R, Wiesendanger M, Zhang HZ, et al. Immunologic characteristics of intrarenal T cells: trafficking of expanded CD8+ T cell beta-chain clonotypes in progressive lupus nephritis [J]. Arthritis Rheum, 2012, 64(5): 1589-1600.
[48] Zhou G, Fujio K, Sadakata A, et al. Identification of systemically expanded activated T cell clones in MRL/lpr and NZB/W F1 lupus model mice [J]. Clin Exp Immunol, 2004, 136(3): 448-455.
[49] Kato T, Kurokawa M, Sasakawa H, et al. Analysis of accumulated T cell clonotypes in patients with systemic lupus erythematosus [J]. Arthritis Rheum, 2000, 43(12): 2712-2721.
[50] Chen PM, Wilson PC, Shyer JA, et al. Kidney tissue hypoxia dictates T cell-mediated injury in murine lupus nephritis [J]. Sci Transl Med, 2020, 12(538):eaay1620. doi: 10.1126/scitranslmed.aay1620.
[51] Konstantinov KN, Ulff-Moller CJ, Tzamaloukas AH. Infections and antineutrophil cytoplasmic antibodies: triggering mechanisms [J]. Autoimmun Rev, 2015, 14(3): 201-203.
[52] Paust HJ, Turner JE, Steinmetz OM, et al. The IL-23/Th17 axis contributes to renal injury in experimental glomerulonephritis [J]. J Am Soc Nephrol, 2009, 20(5): 969-979.
[53] Krebs CF, Reimers D, Zhao Y, et al. Pathogen-induced tissue-resident memory TH17(TRM17)cells amplify autoimmune kidney disease [J]. Sci Immunol, 2020, 5(50):eaba 4163. doi: 10.1126/sciimmunol.aba4163.
[54] Savas P, Virassamy B, Ye C, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis [J]. Nat Med, 2018, 24(7): 986-993.
[55] Clarke J, Panwar B, Madrigal A, et al. Single-cell transcriptomic analysis of tissue-resident memory T cells in human lung cancer [J]. J Exp Med, 2019, 216(9): 2128-2149.
[56] Park SL, Gebhardt T, Mackay LK. Tissue-resident memory T cells in cancer immunosurveillance [J]. Trends Immunol, 2019, 40(8): 735-747.
[57] Nishida K, Kawashima A, Kanazawa T, et al. Clinical importance of the expression of CD4+CD8+ T cells in renal cell carcinoma [J]. Int Immunol, 2020, 32(5): 347-357.
[58] Krishna C, Dinatale RG, Kuo F, et al. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy [J]. Cancer Cell, 2021, 39(5): 662-677.
[59] De Leur K, Dieterich M, Hesselink DA, et al. Characterization of donor and recipient CD8+ tissue-resident memory T cells in transplant nephrectomies [J]. Sci Rep, 2019, 9(1): 5984. doi: 10.1038/s41598-019-42401-9.
[60] Abou-Daya KI, Tieu R, Zhao D, et al. Resident memory T cells form during persistent antigen exposure leading to allograft rejection [J]. Sci Immunol, 2021, 6(57). doi: 10.1126/sciimmunol.abc8122.
[61] Miller BC, Sen DR, Al Abosy R, et al. Subsets of exhausted CD8(+)T cells differentially mediate tumor control and respond to checkpoint blockade [J]. Nat Immunol, 2019, 20(3): 326-336.
[62] 余思菲, 吴长有. 组织定居记忆性T细胞的免疫学特征研究进展 [J]. 中国免疫学杂志, 2017, 33(7): 1093-1100. YU Sifei, WU Changyou. Advances in the study of the immunological characteristics of tissue-resident memory T cells(in Chinese)[J]. Chinese Journal of Immunolo, 2017, 33(7): 1093-1100.
[1] 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-.
[2] 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21.
[3] 李刚,薛皓,邱伟,赵荣荣. 脑胶质瘤抑制性免疫微环境形成机制及研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 67-73.
[4] 胡昭,王强. 新型冠状病毒感染相关性肾损伤[J]. 山东大学学报 (医学版), 2020, 58(3): 26-31.
[5] 吕晨箫,李洋,高颖,张群业,张磊,王尊松. 慢性肾脏病5期患者的肠道菌群变化[J]. 山东大学学报 (医学版), 2019, 57(7): 72-79.
[6] 张丽红,王林省,陈东风,陈月芹,李娴,刘艳杰,李磊. 肾脏混合性上皮间质瘤的CT和MRI表现[J]. 山东大学学报 (医学版), 2018, 56(7): 70-75.
[7] 周苗,卞伟玮,柳晓涓,康凤玲,薛付忠,刘静. 嗜碱性粒细胞百分比与慢性肾脏病关系的回顾性队列研究[J]. 山东大学学报 (医学版), 2018, 56(3): 85-90.
[8] 郑瑾,张江伟,王旭珍,匡陪丹,何晓丽,薛武军. 肾移植术后早期淋巴细胞及DSA监测在诊断移植排斥反应中的意义[J]. 山东大学学报(医学版), 2017, 55(7): 89-94.
[9] 周苗,夏同耀,孙爱玲,李明,申振伟,卞伟玮,蒋正,康凤玲,柳晓涓,薛付忠,刘静. 健康管理人群慢性肾脏病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 98-103.
[10] 梁丽宁,钟霞,季宪飞,胡浩然,朱芳芳,陈吉彬,陈茜茜,商德亚. 尼可地尔后适应对猪心脏骤停后心脑肾缺血再灌注损伤的保护作用[J]. 山东大学学报(医学版), 2017, 55(10): 46-51.
[11] 申振伟,季晓康,王庆莲,李洁,薛付忠,刘静. 非酒精性脂肪肝与慢性肾脏病关系的回顾性队列研究[J]. 山东大学学报(医学版), 2016, 54(7): 43-49.
[12] 叶瑞, 陈睿, 唐芳, 朱秋霞, 姜冬梅. 连续性肾脏替代治疗在60例危重症患者中的应用[J]. 山东大学学报(医学版), 2014, 52(S2): 97-98.
[13] 李贺群, 聂春兰. 宫颈癌合并肺肾转移1例[J]. 山东大学学报(医学版), 2014, 52(S1): 119-119.
[14] 葛均克,赵升田. 骨髓间充质干细胞与CD133+肾脏细胞对急性肾损伤的疗效[J]. 山东大学学报(医学版), 2013, 51(9): 55-59.
[15] 孔祥雷,宝群,魏勇,贾晓妍,陈萍,唐利军,王尊松,李文斌,崔美玉,许冬梅. 血液透析患者矿物质和骨代谢紊乱控制情况的单中心研究[J]. 山东大学学报(医学版), 2012, 50(8): 116-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王焕亮,孙宝柱,杜洪玫,周长青,张丽. 不同麻醉监测指标调控异丙酚麻醉的比较[J]. 山东大学学报(医学版), 2006, 44(5): 471 -474 .
[2] 宋永红,马春红,吕红娟,朱传福,聂向民,王玫,刘艳,张萍 . 中国北方汉族人群HLA基因多态性研究[J]. 山东大学学报(医学版), 2007, 45(6): 546 -553 .
[3] 黄庆,田辉,李林,梁飞,刘贤锡 . 老年人肺癌组织中鸟氨酸脱羧酶基因表达及其临床意义[J]. 山东大学学报(医学版), 2006, 44(6): 556 -559 .
[4] 朱梅佳,韩巨,王新怡,鹿伟,王爱华,关心华,曹霞,曹秉振. 伴有皮层下梗死和白质脑病的常染色体显性遗传性脑动脉病临床病理研究[J]. 山东大学学报(医学版), 2006, 44(8): 834 -839 .
[5] 侯晓阳,卜培莉,张运,冯进波,刘春喜,李传保,郝明秀. 过氧化酶体增殖物激活受体α抑制血管紧张素Ⅱ促心肌纤维化作用的试验研究[J]. 山东大学学报(医学版), 2007, 45(7): 665 -668 .
[6] 曾季平,王丽娜,王立祥,任晓辉,张孟业,夏文,崔行. 氯化锰致PC12细胞损伤的研究[J]. 山东大学学报(医学版), 2006, 44(5): 467 -470 .
[7] 舒雅,齐峰. 下颌角托在肥胖患者全麻诱导中的应用[J]. 山东大学学报(医学版), 2007, 45(10): 1072 -1074 .
[8] 于慧1,2 ,陈少华1 ,赵家军2 ,高聆3
. 乙醇对人肝L02细胞糖原和GSK3β、PAMPK的影响[J]. 山东大学学报(医学版), 2009, 47(04): 75 -78 .
[9] 宋海岩,武玉玲,张艳萍. 牡蛎提取物对高温致神经管畸形中凋亡细胞的保护作用[J]. 山东大学学报(医学版), 2007, 45(2): 113 -116 .
[10] . SWI显示弥漫性轴索损伤病灶个数与GCS评分相关性的分析[J]. 山东大学学报(医学版), 2009, 47(10): 126 -129 .