山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (9): 15-21.doi: 10.6040/j.issn.1671-7554.0.2021.0874
易凡,李亮
YI Fan, LI Liang
摘要: 组织定居性记忆T细胞(TRM)是新近发现的一类不参与体循环,驻留在器官的T淋巴细胞。TRM具有独特的分化调控机制和免疫调节功能,在多种疾病的发生发展中发挥重要作用,有望成为新的治疗靶点。有研究发现TRM存在于肾脏中,因此本文将围绕TRM在肾脏中的形成、表型、维持和作用等方面,综述TRM在肾脏中的最新研究进展。
中图分类号:
[1] Jiang X, Clark RA, Liu L, et al. Skin infection generates non-migratory memory CD8+ T(RM)cells providing global skin immunity [J]. Nature, 2012, 483(7388): 227-231. [2] Glennie ND, Yeramilli VA, Beiting DP, et al. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection [J]. J Exp Med, 2015, 212(9): 1405-1414. [3] Pizzolla A, Nguyen THO, Smith JM, et al. Resident memory CD8(+)T cells in the upper respiratory tract prevent pulmonary influenza virus infection [J]. Sci Immunol, 2017, 2(12): eaam6970. doi: 10.1126/sciimmunol.aam6970. [4] Rodriguez-Garcia M, Shen Z, Fortier JM, et al. Differential cytotoxic function of resident and non-resident CD8+ T cells in the human female reproductive tract before and after menopause [J]. Front Immunol, 2020, 11: 1096. doi: 10.3389/fimmu.2020.01096. [5] Zundler S, Becker E, Spocinska M, et al. Hobit- and Blimp-1-driven CD4(+)tissue-resident memory T cells control chronic intestinal inflammation [J]. Nat Immunol, 2019, 20(3): 288-300. [6] Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defence [J]. Nat Rev Immunol, 2016, 16(2): 79-89. [7] Okla K, Farber DL, Zou W. Tissue-resident memory T cells in tumor immunity and immunotherapy [J]. J Exp Med, 2021, 218(4):e20201605. doi: 10.1084/jem.20201605. [8] Mueller SN, Gebhardt T, Carbone FR, et al. Memory T cell subsets, migration patterns, and tissue residence [J]. Annu Rev Immunol, 2013, 31: 137-161. doi: 10.1146/annurev-immunol-032712-095954. [9] Schenkel JM, Masopust D. Tissue-resident memory T cells [J]. Immunity, 2014, 41(6): 886-897. [10] Gebhardt T, Mueller SN, HEATH WR, et al. Peripheral tissue surveillance and residency by memory T cells [J]. Trends Immunol, 2013, 34(1): 27-32. [11] Hogan RJ, Usherwood EJ, Zhong W, et al. Activated antigen-specific CD8+ T cells persist in the lungs following recovery from respiratory virus infections [J]. J Immunol, 2001, 166(3): 1813-1822. [12] Masopust D, Vezys V, Marzo AL, et al. Preferential localization of effector memory cells in nonlymphoid tissue [J]. Science, 2001, 291(5512): 2413-2417. [13] Gebhardt T, Wakim LM, Eidsmo L, et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus [J]. Nat Immunol, 2009, 10(5): 524-530. [14] Teijaro JR, Turner D, Pham Q, et al. Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection [J]. J Immunol, 2011, 187(11): 5510-5514. [15] Casey KA, Fraser KA, Schenkel JM, et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues [J]. J Immunol, 2012, 188(10): 4866-4875. [16] Shin H, Iwasaki A. Tissue-resident memory T cells [J]. Immunol Rev, 2013, 255(1): 165-181. [17] Intlekofer AM, Takemoto N, Wherry EJ, et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin [J]. Nat Immunol, 2005, 6(12): 1236-1244. [18] Bromley SK, Thomas SY, Luster AD. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics [J]. Nat Immunol, 2005, 6(9): 895-901. [19] Skon CN, Lee JY, Anderson KG, et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells [J]. Nat Immunol, 2013, 14(12): 1285-1293. [20] Mackay LK, Braun A, Macleod BL, et al. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention [J]. J Immunol, 2015, 194(5): 2059-2063. [21] Mackay LK, Rahimpour A, Ma JZ, et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin [J]. Nat Immunol, 2013, 14(12): 1294-1301. doi: 10.1038/ni.2744. [22] Stelma F, De Niet A, Sinnige MJ, et al. Human intrahepatic CD69 + CD8+ T cells have a tissue resident memory T cell phenotype with reduced cytolytic capacity [J]. Sci Rep, 2017, 7(1): 6172. doi: 10.1038/s41598-017-06352-3. [23] Ma C, Mishra S, Demel EL, et al. TGF-beta controls the formation of kidney-resident T cells via promoting effector T cell extravasation [J]. J Immunol, 2017, 198(2): 749-756. [24] Soukou S, Huber S, Krebs CF. T cell plasticity in renal autoimmune disease [J]. Cell Tissue Res, 2021,1-11. doi: 10.1007/s00441-021-03466-z. [25] Suarez-Fueyo A, Bradley SJ, Klatzmann D, et al. T cells and autoimmune kidney disease [J]. Nat Rev Nephrol, 2017, 13(6): 329-343. [26] Li Q, Wang Z, Zhang Y, et al. NLRC5 deficiency protects against acute kidney injury in mice by mediating carcinoembryonic antigen-related cell adhesion molecule 1 signaling [J]. Kidney Int, 2018, 94(3): 551-566. [27] Cibrian D, Sanchez-Madrid F. CD69: from activation marker to metabolic gatekeeper [J]. Eur J Immunol, 2017, 47(6): 946-953. [28] Topham DJ, Reilly EC. Tissue-resident memory CD8+T cells: from phenotype to function [J]. Front Immunol, 2018, 9: 515. doi: 10.3389/fimmu.2018.00515. [29] Van Der Putten C, Remmerswaal EBM, Terpstra ML, et al. CD8 and CD4 T Cell Populations in Human Kidneys [J]. Cells, 2021, 10(2):288. doi: 10.3390/cells10020288. [30] Dornieden T, Sattler A, Pascual-Reguant A, et al. Signatures and specificity of tissue-resident lymphocytes identified in human renal peri-tumor and tumor tissue [J]. J Am Soc Nephrol, 2021, 32(9):2223-2241. [31] Mackay LK, Minnich M, Kragten NA, et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes [J]. Science, 2016, 352(6284): 459- 463. [32] Milner JJ, Toma C, Yu B, et al. Runx3 programs CD8+T cell residency in non-lymphoid tissues and tumours [J]. Nature, 2017, 552(7684): 253-257. [33] Van Aalderen MC, Remmerswaal EB, Heutinck KM, et al. Clinically relevant reactivation of polyomavirus BK(BKPyV)in HLA-A02-Positive renal transplant recipients is associated with impaired effector-memory differentiation of BKPyV-specific CD8+ T cells [J]. PLoS Pathog, 2016, 12(10): e1005903. doi: 10.1371/journal.ppat.1005903. [34] Iijima N, Iwasaki A. Tissue instruction for migration and retention of TRM cells [J]. Trends Immunol, 2015, 36(9): 556-564. [35] Turner JE, Becker M, Mittrucker HW, et al. Tissue-resident lymphocytes in the kidney [J]. J Am Soc Nephrol, 2018, 29(2): 389-399. [36] Mackay LK, Wynne-Jones E, Freestone D, et al. T-box transcription factors combine with the cytokines TGF-beta and IL-15 to control tissue-resident memory T cell fate [J]. Immunity, 2015, 43(6): 1101-1111. [37] Jabri B, Abadie V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction [J]. Nat Rev Immunol, 2015, 15(12): 771-783. [38] Pallett LJ, Davies J, Colbeck EJ, et al. IL-2(high)tissue-resident T cells in the human liver: Sentinels for hepatotropic infection [J]. J Exp Med, 2017, 214(6): 1567-1580. [39] Weiler M, Rogashev B, Einbinder T, et al. Interleukin-15, a leukocyte activator and growth factor, is produced by cortical tubular epithelial cells [J]. J Am Soc Nephrol, 1998, 9(7): 1194-1201. [40] Schenkel JM, Fraser KA, Casey KA, et al. IL-15-Independent maintenance of tissue-resident and boosted effector memory CD8 T cells [J]. J Immunol, 2016, 196(9): 3920-3926. [41] Li MO, Flavell RA. TGF-beta: a master of all T cell trades [J]. Cell, 2008, 134(3): 392-404. [42] Zhou M, Guo C, Li X, et al. JAK/STAT signaling controls the fate of CD8+CD103+ tissue-resident memory T cell in lupus nephritis [J]. J Autoimmun, 2020, 109: 102424. doi: 10.1016/j.jaut.2020.102424. [43] Wu H, Liao W, Li Q, et al. Pathogenic role of tissue-resident memory T cells in autoimmune diseases [J]. Autoimmun Rev, 2018, 17(9): 906-911. [44] Willemsen M, Linkute R, Luiten RM, et al. Skin-resident memory T cells as a potential new therapeutic target in vitiligo and melanoma [J]. Pigment Cell Melanoma Res, 2019, 32(5): 612-622. [45] Park S, Park J, Kim E, et al. The capicua/ETS translocation variant 5 axis regulates liver-resident memory CD8+T-cell development and the pathogenesis of liver injury [J]. Hepatology, 2019, 70(1): 358-371. [46] Jung J, Lee JS, Kim YG, et al. Synovial fluid CD69+CD8+ T cells with tissue-resident phenotype mediate perforin-dependent citrullination in rheumatoid arthritis [J]. Clin Transl Immunology, 2020, 9(6): e1140. doi: 10.1002/cti2.1140. [47] Winchester R, Wiesendanger M, Zhang HZ, et al. Immunologic characteristics of intrarenal T cells: trafficking of expanded CD8+ T cell beta-chain clonotypes in progressive lupus nephritis [J]. Arthritis Rheum, 2012, 64(5): 1589-1600. [48] Zhou G, Fujio K, Sadakata A, et al. Identification of systemically expanded activated T cell clones in MRL/lpr and NZB/W F1 lupus model mice [J]. Clin Exp Immunol, 2004, 136(3): 448-455. [49] Kato T, Kurokawa M, Sasakawa H, et al. Analysis of accumulated T cell clonotypes in patients with systemic lupus erythematosus [J]. Arthritis Rheum, 2000, 43(12): 2712-2721. [50] Chen PM, Wilson PC, Shyer JA, et al. Kidney tissue hypoxia dictates T cell-mediated injury in murine lupus nephritis [J]. Sci Transl Med, 2020, 12(538):eaay1620. doi: 10.1126/scitranslmed.aay1620. [51] Konstantinov KN, Ulff-Moller CJ, Tzamaloukas AH. Infections and antineutrophil cytoplasmic antibodies: triggering mechanisms [J]. Autoimmun Rev, 2015, 14(3): 201-203. [52] Paust HJ, Turner JE, Steinmetz OM, et al. The IL-23/Th17 axis contributes to renal injury in experimental glomerulonephritis [J]. J Am Soc Nephrol, 2009, 20(5): 969-979. [53] Krebs CF, Reimers D, Zhao Y, et al. Pathogen-induced tissue-resident memory TH17(TRM17)cells amplify autoimmune kidney disease [J]. Sci Immunol, 2020, 5(50):eaba 4163. doi: 10.1126/sciimmunol.aba4163. [54] Savas P, Virassamy B, Ye C, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis [J]. Nat Med, 2018, 24(7): 986-993. [55] Clarke J, Panwar B, Madrigal A, et al. Single-cell transcriptomic analysis of tissue-resident memory T cells in human lung cancer [J]. J Exp Med, 2019, 216(9): 2128-2149. [56] Park SL, Gebhardt T, Mackay LK. Tissue-resident memory T cells in cancer immunosurveillance [J]. Trends Immunol, 2019, 40(8): 735-747. [57] Nishida K, Kawashima A, Kanazawa T, et al. Clinical importance of the expression of CD4+CD8+ T cells in renal cell carcinoma [J]. Int Immunol, 2020, 32(5): 347-357. [58] Krishna C, Dinatale RG, Kuo F, et al. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy [J]. Cancer Cell, 2021, 39(5): 662-677. [59] De Leur K, Dieterich M, Hesselink DA, et al. Characterization of donor and recipient CD8+ tissue-resident memory T cells in transplant nephrectomies [J]. Sci Rep, 2019, 9(1): 5984. doi: 10.1038/s41598-019-42401-9. [60] Abou-Daya KI, Tieu R, Zhao D, et al. Resident memory T cells form during persistent antigen exposure leading to allograft rejection [J]. Sci Immunol, 2021, 6(57). doi: 10.1126/sciimmunol.abc8122. [61] Miller BC, Sen DR, Al Abosy R, et al. Subsets of exhausted CD8(+)T cells differentially mediate tumor control and respond to checkpoint blockade [J]. Nat Immunol, 2019, 20(3): 326-336. [62] 余思菲, 吴长有. 组织定居记忆性T细胞的免疫学特征研究进展 [J]. 中国免疫学杂志, 2017, 33(7): 1093-1100. YU Sifei, WU Changyou. Advances in the study of the immunological characteristics of tissue-resident memory T cells(in Chinese)[J]. Chinese Journal of Immunolo, 2017, 33(7): 1093-1100. |
[1] | 吴逸南 葛志明 李方 贺红 姜虹 张运. 自发性高血压大鼠肾脏血管紧张素转换酶2的表达[J]. 山东大学学报(医学版), 2209, 47(6): 5-. |
[2] | 刘敏,张玉超,马小莉,刘昕宇,孙露,左丹,刘元涛. 孤核受体NR4A1在H2O2诱导小鼠肾脏足细胞损伤中的作用[J]. 山东大学学报 (医学版), 2022, 60(5): 16-21. |
[3] | 李刚,薛皓,邱伟,赵荣荣. 脑胶质瘤抑制性免疫微环境形成机制及研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 67-73. |
[4] | 胡昭,王强. 新型冠状病毒感染相关性肾损伤[J]. 山东大学学报 (医学版), 2020, 58(3): 26-31. |
[5] | 吕晨箫,李洋,高颖,张群业,张磊,王尊松. 慢性肾脏病5期患者的肠道菌群变化[J]. 山东大学学报 (医学版), 2019, 57(7): 72-79. |
[6] | 张丽红,王林省,陈东风,陈月芹,李娴,刘艳杰,李磊. 肾脏混合性上皮间质瘤的CT和MRI表现[J]. 山东大学学报 (医学版), 2018, 56(7): 70-75. |
[7] | 周苗,卞伟玮,柳晓涓,康凤玲,薛付忠,刘静. 嗜碱性粒细胞百分比与慢性肾脏病关系的回顾性队列研究[J]. 山东大学学报 (医学版), 2018, 56(3): 85-90. |
[8] | 郑瑾,张江伟,王旭珍,匡陪丹,何晓丽,薛武军. 肾移植术后早期淋巴细胞及DSA监测在诊断移植排斥反应中的意义[J]. 山东大学学报(医学版), 2017, 55(7): 89-94. |
[9] | 周苗,夏同耀,孙爱玲,李明,申振伟,卞伟玮,蒋正,康凤玲,柳晓涓,薛付忠,刘静. 健康管理人群慢性肾脏病风险预测模型[J]. 山东大学学报(医学版), 2017, 55(6): 98-103. |
[10] | 梁丽宁,钟霞,季宪飞,胡浩然,朱芳芳,陈吉彬,陈茜茜,商德亚. 尼可地尔后适应对猪心脏骤停后心脑肾缺血再灌注损伤的保护作用[J]. 山东大学学报(医学版), 2017, 55(10): 46-51. |
[11] | 申振伟,季晓康,王庆莲,李洁,薛付忠,刘静. 非酒精性脂肪肝与慢性肾脏病关系的回顾性队列研究[J]. 山东大学学报(医学版), 2016, 54(7): 43-49. |
[12] | 叶瑞, 陈睿, 唐芳, 朱秋霞, 姜冬梅. 连续性肾脏替代治疗在60例危重症患者中的应用[J]. 山东大学学报(医学版), 2014, 52(S2): 97-98. |
[13] | 李贺群, 聂春兰. 宫颈癌合并肺肾转移1例[J]. 山东大学学报(医学版), 2014, 52(S1): 119-119. |
[14] | 葛均克,赵升田. 骨髓间充质干细胞与CD133+肾脏细胞对急性肾损伤的疗效[J]. 山东大学学报(医学版), 2013, 51(9): 55-59. |
[15] | 孔祥雷,宝群,魏勇,贾晓妍,陈萍,唐利军,王尊松,李文斌,崔美玉,许冬梅. 血液透析患者矿物质和骨代谢紊乱控制情况的单中心研究[J]. 山东大学学报(医学版), 2012, 50(8): 116-119. |
|