您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2015, Vol. 53 ›› Issue (9): 80-85.doi: 10.6040/j.issn.1671-7554.0.2015.307

• 临床医学 • 上一篇    下一篇

Alport综合征iPSCs差异性表达新小核糖核苷酸的分析

陈文标, 喻祥琪, 戴勇   

  1. 暨南大学第二临床学院, 深圳市人民医院临床医学研究中心, 广东 深圳 518020
  • 收稿日期:2015-03-21 出版日期:2015-09-10 发布日期:2015-09-10
  • 通讯作者: 戴勇。E-mail:daiyong22@aliyun.com E-mail:daiyong22@aliyun.com
  • 基金资助:
    广东省深圳市科技计划(JXY20140416122812045)

Different expressions of novel microRNAs of iPSCs from Alport syndrome

CHEN Wenbiao, YU Xiangqi, DAI Yong   

  1. Second Clinical Medical College of Jinan University, Clinical Medical Research Center, Shenzhen Peoples Hospital, Shenzhen 518020, Guangdong, China
  • Received:2015-03-21 Online:2015-09-10 Published:2015-09-10
  • Contact: 戴勇。E-mail:daiyong22@aliyun.com E-mail:daiyong22@aliyun.com

摘要: 目的 构建Alport综合征(AS)与正常对照者(NC)诱导多能干细胞(iPSCs)新核糖核苷酸(novel microRNA)差异性表达谱,分析其靶基因功能。方法 采用前期工作成功从尿肾状杆细胞诱导成的iPSCs,运用高通量测序平台获得AS与NC的差异性表达谱,使用靶基因预测软件TargetScan进行靶基因预测,靶基因与参考基因比较后,在候选靶基因找到显著富集的GO条目及KEGG通路。结果 在AS与NC中发现49个有意义的差异性表达novel microRNAs,其中33个表达上调,16个表达下调。在GO靶基因富集分析中,靶基因主要富集于生物调节、生物新陈代谢、细胞组成、细胞信号传导、酶催化反应、分子转运等过程。在KEGG通路分析中,靶基因主要参与代谢通路、嘌呤代谢、癌症转录调节等过程。结论 来源于AS与NC的iPSCs存在较大的差异性表达novel microRNA,其靶基因在分子功能、细胞组成、生物过程起着重要作用。这些差异性表达的novel mciroRNAs与靶基因可能是AS发病机制的潜在位点。

关键词: KEGG通路, Alport综合征, 诱导多能干细胞, GO富集, 小核糖核苷酸

Abstract: Objective To investigate the expression profile of iPSCs of novel microRNAs between patients with Alport syndrome (AS) and normal controls (NC), and to analyze the target genes. Methods The expression profile of novel microRNAs was acquired from previously induced iPSCs, using high-throughput sequencing platform. After that, TargetScan software was adopted to predict target genes, which were then compared with reference genes, and the significantly encriched GO items and KEGG pathways were selected. Results A total of 49 differently expressed novel microRNAs were selected, 33 of which were up-regulated and 16 were down-regulated. GO enrichment analysis indicated that the target genes mainly enriched in biological regulation and metabolism; cell component and signal transduction; enzymic catalytic reaction; transporter activity. KEGG pathway analysis showed that the target genes mainly participated in metabolic pathways, purine metabolism, and cancer transcriptional regulation. Conclusion Novel microRNAs of iPSCs from AS and from NC are differently expressed, and the target genes mainly take part in molecular function, cellular component, and biological activities. Those differently expressed novel microRNAs and target genes may play an important role in the pathogenesis of AS.

Key words: Induced pluripotent stem cells, Gene ontology enrichment, microRNA, Alport syndrome, Kyoto encyclopedia of genes and genomes pathway

中图分类号: 

  • R394-33
[1] 董程, 陈斯琦, 张焱琴, 等. X-连锁Alport综合征的听力表现与皮肤α5(Ⅳ)胶原表达的关系[J]. 中华耳科学杂志, 2014, 12(2): 275-279. DONG Cheng, CHEN Siqi, ZHANG Yanqin, et al. Relationship between hearing phenotype and collagen type IV α5 Chain expression in skin in X-linked alport syndrome[J]. Chinese Journal of Otology, 2014, 12(2): 275-279.
[2] 李玉峰, 卫敏江, 吴伟岚, 等. 儿童肾活检977例病理及临床分析[J]. 上海交通大学学报: 医学版, 2014, 36(3): 333-337. LI Yufeng, WEI Minjiang, WU Weilan, et al. Clinical and pathological analysis of 977 children with renal biopsy[J]. Journal of Shanghai Jiaotong University: Medical Science, 2014, 36(3): 333-337.
[3] 陈楠. 重视遗传性肾脏疾病的筛查与诊治[J]. 中国实用内科杂志, 2014, 34(3): 217-219. CHEN Nan. Emphasis on screening and treatment of hereditary kidney diseases[J]. Chin J Pract Intern Med, 2014, 34(3): 217-219.
[4] Shen J, Hung MC. Signaling-Mediated Regulation of MicroRNA Processing[J]. Cancer Res, 2015, 75(5): 783-791.
[5] Chen Y, Luo R, Xu Y, et al. Generation of systemic lupus erythematosus-specific induced pluripotent stem cells from urine[J]. Rheumatol Int, 2013, 33(8): 2127-2134.
[6] Li Y, Zhang Z, Liu F, et al. Performance comparison and evaluation of software tools for microRNA deep-sequencing data analysis[J]. Nucleic Acids Res, 2012, 40(10): 4298-4305.
[7] Femminella GD, Ferrara N, Rengo G, et al. The emerging role of microRNAs in Alzheimer's disease[J]. Front Physiol, 2015, 6: 40. doi: 10.3389/fphys.2015.00040. eCollection 2015.
[8] Nishiguchi T, Imanishi T, Akasaka T, et al. MicroRNAs and Cardiovascular Diseases[J]. Biomed Res Int, 2015, 2015: 682857. doi: 10.1155/2015/682857. Epub 2015 Feb 1.
[9] Zhang J, Yan YG, Wang C, et al. MicroRNAs in osteosarcoma[J]. Clin Chim Acta, 2015, 444: 9-17. doi: 10.1016/j.cca.2015.01.025. Epub 2015 Feb 4.
[10] 王勇, 厉泉, 陈善良, 等. microRNA-133对终末期扩张型心肌病心肌纤维化调控作用的研究[J]. 山东大学学报: 医学版, 2015, 53(5): 60-65. WANG Yong, LI Quan, CHEN Sanliang, et al. Effects of microRNA-133 on end-stage myocardial fibrosis of dilated cardiomyopathy[J]. Journal of Shandong University: Health Sciences, 2015, 53(5): 60-65.
[11] Lahmy R, Soleimani M, Sanati MH, et al. MiRNA-375 promotes beta pancreatic differentiation in human induced pluripotent stem (hiPS) cells[J]. Mol Biol Rep, 2014, 41(4): 2055-2066.
[12] Roese-Koerner B, Stappert L, Koch P, et al. Pluripotent stem cell-derived somatic stem cells as tool to study the role of microRNAs in early human neural development[J]. Curr Mol Med, 2013, 13(5): 707-722.
[13] Chen WB, Huang JR, Yu XQ, et al. Identification of microRNAs and their target genes in Alport syndrome using deep sequencing of iPSCs samples[J]. J Zhejiang Univ Sci B, 2015, 16(3): 235-250.
[14] Tan Kuibi, Chen Jing, Li Wuxian, et al. Genome-wide analysis of microRNAs expression profiling in patients with primary IgA nephropathy[J]. Genome, 2013, 56(3): 161-169.
[15] Chen WB, Lin XC, Tan KB, et al. Integrated profiling of microRNA expression in membranous nephropathy using high-throughput sequencing technology[J]. Int J Mol Med, 2014, 33(1): 25-34.
[16] Sui WG, Lin H, Peng WJ, et al. Molecular dysfunctions in acute rejection after renal transplantation revealed by integrated analysis of transcription factor, microRNA and long noncoding RNA[J]. Genomics, 2013, 102(4): 310-322.
[17] Yin XL, Zhou YM, Zou MS, et al. The clinical and pathological features of Alport syndrome in children[J]. J Clin Pediatr, 2013, 31(12): 1125-1128.
[18] Steenhard BM, Vanacore R, Friedman D, et al. Upregulated expression of integrin alpha1 in mesangial cells and integrin alpha3 and vimentin in podocytes of Col4a3-null (Alport) mice[J]. PLoS One, 2012, 7(12): e50745. doi: 10.1371/journal~pone.0050745.Epub 2012 Dec7.
[19] Abrahamson DR. Role of the podocyte (and glomerular endothelium) in building the GBM[J]. Semin Nephrol, 2012, 32(4): 342-349.
[20] Murea M. Advanced kidney failure and hyperuricemia[J]. Adv Chronic Kidney Dis, 2012, 19(6): 419-424.
[21] O'Connell S, Tuite N, Ryan MP, et al. Cyclosporine A-induced oxidative stress in human renal mesangial cells: a role for ERK 1/2 MAPK signaling[J]. Toxicol Sci, 2012, 126(1): 101-113.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!