您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (4): 70-78.doi: 10.6040/j.issn.1671-7554.0.2021.0166

• 临床医学 • 上一篇    下一篇

长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值

孔雪1,2,李娟1,2,段伟丽1,2,史爽1,2,李培龙1,2,杜鲁涛1,2,毛海婷1,王传新1,2   

  1. 1. 山东大学第二医院检验医学中心, 山东 济南 250033;2. 山东省肿瘤标志物检测工程实验室, 山东 济南 250033
  • 发布日期:2021-04-30
  • 通讯作者: 王传新. E-mail:cxwang@sdu.edu.cn毛海婷. E-mail:maohaiting@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(82002229);山东省自然科学基金(ZR2019PH074);国家重点研发计划(2018YFC0114700)

Effects of lncRNA AC012073.1 on the migration and invasion of human breast cancer cells and its clinical significance

KONG Xue1,2, LI Juan1,2, DUAN Weili1,2, SHI Shuang1,2, LI Peilong1,2, DU Lutao1,2, MAO Haiting1, WANG Chuanxin1,2   

  • Published:2021-04-30

摘要: 目的 探讨长链非编码RNA(lncRNA)AC012073.1在乳腺癌中的表达及对细胞迁移侵袭的影响,并对其临床价值进行研究。 方法 运用高通量芯片和TCGA数据挖掘分析在乳腺癌组织中高表达并与患者预后不良相关的lncRNAs。实时荧光定量PCR(qRT-PCR)检测AC012073.1在乳腺癌细胞和血清中的表达水平。通过小干扰或质粒转染技术敲减或过表达AC012073.1,并采用Transwell和划痕实验检测其对细胞迁移与侵袭能力的影响。TargetScan等数据库对下游作用靶点和功能富集分析进行预测,并运用Cytoscape软件绘制ceRNA调控网络。采用受试者工作曲线(ROC)分析血清AC012073.1对乳腺癌的诊断效能。 结果 筛选发现一种新型lncRNA AC012073.1,并在乳腺癌组织中高表达(P<0.001),且与患者预后不良关联(P=0.031),乳腺癌细胞系中AC012073.1表达水平均高于正常乳腺上皮细胞,差异具有统计学意义(P<0.05)。MDA-MB-231和MCF-7两株细胞功能实验结果显示,敲减AC012073.1明显抑制细胞迁移和侵袭能力,反之过表达AC012073.1后,细胞的迁移和侵袭能力明显增强。下游靶点和基因通路分析结果显示,AC012073.1可通过调控肿瘤经典信号通路促进乳腺癌的进展。qRT-PCR结果显示,与健康对照相比,乳腺癌患者血清中AC012073.1的表达较高且具有统计学意义(P<0.001),ROC曲线结果显示曲线下面积(AUC)为0.833,表明其对乳腺癌具有良好的诊断价值。 结论 研究表明AC012073.1在乳腺癌中高表达,促进乳腺癌细胞的迁移和侵袭,并可能成为乳腺癌诊断和预后的生物标志物。

关键词: 长链非编码RNA, 乳腺癌, 迁移, 侵袭, 生物标志物

Abstract: Objective To explore the expression of long non-coding RNA(lncRNA)AC012073.1 and its effects on the migration and invasion of human breast cancer(BC)cells. Methods The lncRNAs which were upregulated in BC tissues and related to poor prognosis were screened with lncRNA microarray and the cancer genome atlas(TCGA). The expression of AC012073.1 in BC cells and serum was detected with quantitative real-time PCR(qRT-PCR). MDA-MB-231 and MCF-7 cells were transfected with AC012073.1 siRNAs or plasmid and the transfection efficiency was detected with qRT-PCR. Cell migration and invasion were then determined with transwell assay and wound healing assay, respectively. The downstream targets and function enrichment analysis were predicted with TargetScan, and a regulatory network of ceRNA was constructed with Cytoscape software. The diagnostic efficacy of serum AC012073.1 for BC was analyzed with receiver operating characteristic(ROC)curve. Results A novel lncRNA, AC012073.1, was identified, which was significantly upregulated in BC tissues(P<0.001)and associated with poor prognosis(P=0.031). Compared with normal breast epithelial cells, BC cell lines had elevated expression of AC012073.1(P<0.05). Knockdown of AC012073.1 significantly inhibited cell migration and invasion, but overexpression of AC012073.1 promoted cell migration and invasion. The downstream targets and gene ontology(GO)analysis indicated that AC012073.1 promoted BC progression by regulating typical tumor signaling pathways. The qRT-PCR results showed the expression of AC012073.1 significantly increased in BC serum samples(P<0.001). The area under ROC curve(AUC)was 0.833, indicating it had a great diagnostic value for BC. Conclusion Highly expressed in BC, AC012073.1 promotes the migration and invasion of BC cells, and may serve as a potential biomarker for the diagnosis and prognosis of BC.

Key words: LncRNA, Breast cancer, Migration, Invasion, Biomarker

中图分类号: 

  • R737.9
[1] DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(6): 438-451.
[2] Feng RM, Zong YN, Cao SM, et al. Current cancer situation in China: good or bad news from the 2018 global cancer statistics? [J]. Cancer Commun(Lond), 2019, 39(1): 22. doi: 10.1186/s40880-019-0368-6.
[3] 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1): 19-28.
[4] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[5] Rossi L, Mazzara C, Pagani O. Diagnosis and treatment of breast cancer in young women [J]. Curr Treat Options Oncol, 2019, 20(12): 86. doi: 10.1007/s11864-019-0685-7.
[6] Harbeck N, Gnant M. Breast cancer [J]. Lancet, 2017, 389(10074): 1134-1150.
[7] Liang Y, Zhang H, Song X, et al. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets [J]. Semin Cancer Biol, 2020, 60: 14-27. doi: 10.1016/j.semcancer.2019.08.012.
[8] Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm [J]. Cancer Res, 2017, 77(15): 3965-3981.
[9] Qian X, Zhao J, Yeung PY, et al. Revealing lncRNA structures and interactions by sequencing-based approaches [J]. Trends Biochem Sci, 2019, 44(1): 33-52.
[10] Xu Q, Deng F, Qin Y, et al. Long non-coding RNA regulation of epithelial-mesenchymal transition in cancer metastasis [J]. Cell Death Dis, 2016, 7(6): e2254. doi: 10.1038/cddis.2016.149.
[11] Xu S, Wang P, Zhang J, et al. Ai-lncRNA EGOT enhancing autophagy sensitizes paclitaxel cytotoxicity via upregulation of ITPR1 expression by RNA-RNA and RNA-protein interactions in human cancer [J]. Mol Cancer, 2019, 18(1): 89. doi: 10.1186/s12943-019-1017-z.
[12] Hua Q, Mi B, Xu F, et al. Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1alpha axis [J]. Theranostics, 2020, 10(11): 4762-4778.
[13] Chu W, Zhang X, Qi L, et al. The EZH2-PHACTR2-AS1-ribosome axis induces genomic instability and promotes growth and metastasis in breast cancer [J]. Cancer Res, 2020, 80(13): 2737-2750.
[14] Zheng S, Yang L, Zou Y, et al. Long non-coding RNA HUMT hypomethylation promotes lymphangiogenesis and metastasis via activating FOXK1 transcription in triple-negative breast cancer [J]. J Hematol Oncol, 2020, 13(1): 17. doi: 10.1186/s13045-020-00852-y.
[15] Liang Y, Song X, Li Y, et al. LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis [J]. Molecular Cancer, 2020, 19(1): 85. doi: 10.1186/s12943-020-01206-5.
[16] Jing H, Qu X, Liu L, et al. A novel long noncoding RNA(lncRNA), LL22NC03-N64E9.1, promotes the proliferation of lung cancer cells and is a potential prognostic molecular biomarker for lung cancer [J]. Med Sci Monit, 2018, 24: 4317-4323. doi: 10.12659/MSM.908359.
[17] Li J, Hao Y, Mao W, et al. LincK contributes to breast tumorigenesis by promoting proliferation and epithelial-to-mesenchymal transition [J]. J Hematol Oncol, 2019, 12(1): 19. doi: 10.1186/s13045-019-0707-8.
[18] Tang T, Guo C, Xia T, et al. LncCCAT1 promotes breast cancer stem cell function through activating WNT/beta-catenin signaling [J]. Theranostics, 2019, 9(24): 7384-7402.
[19] Xiu B, Chi Y, Liu L, et al. LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription [J]. Mol Cancer, 2019, 18(1): 187. doi: 10.1186/s12943-019-1115-y.
[20] Dong H, Wang W, Mo S, et al. SP1-induced lncRNA AGAP2-AS1 expression promotes chemoresistance of breast cancer by epigenetic regulation of MyD88 [J]. J Exp Clin Cancer Res 2018, 37(1): 202. doi: 10.1186/s13046-018-0875-3.
[21] Pan J, Fang S, Tian H, et al. lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/beta-catenin signaling [J]. Mol Cancer, 2020, 19(1): 9. doi: 10.1186/s12943-020-1133-9.
[22] Cheng B, Rong A, Zhou Q, et al. LncRNA LINC00662 promotes colon cancer tumor growth and metastasis by competitively binding with miR-340-5p to regulate CLDN8/IL22 co-expression and activating ERK signaling pathway [J]. J Exp Clin Cancer Res, 2020, 39(1): 5. doi: 10.1186/s13046-019-1510-7.
[23] Zhuang X, Tong H, Ding Y, et al. Long noncoding RNA ABHD11-AS1 functions as a competing endogenous RNA to regulate papillary thyroid cancer progression by miR-199a-5p/SLC1A5 axis [J]. Cell Death Dis, 2019, 10(8): 620. doi: 10.1038/s41419-019-1850-4.
[24] Peng W, He D, Shan B, et al. LINC81507 act as a competing endogenous RNA of miR-199b-5p to facilitate NSCLC proliferation and metastasis via regulating the CAV1/STAT3 pathway [J]. Cell Death Dis, 2019, 10(7): 533. doi: 10.1038/s41419-019-1740-9.
[25] Zhan Y, Du L, Wang L, et al. Expression signatures of exosomal long non-coding RNAs in urine serve as novel non-invasive biomarkers for diagnosis and recurrence prediction of bladder cancer [J]. Mol Cancer, 2018, 17(1): 142. doi: 10.1186/s12943-018-0893-y.
[26] Yuan L, Xu ZY, Ruan SM, et al. Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance [J]. Mol Cancer, 2020, 19(1): 96. doi: 10.1186/s12943-020-01219-0.
[27] Jiang N, Pan J, Fang S, et al. Liquid biopsy: Circulating exosomal long noncoding RNAs in cancer [J]. Clin Chim Acta, 2019, 495: 331-337.
[28] Lin LY, Yang L, Zeng Q, et al. Tumor-originated exosomal lncUEGC1 as a circulating biomarker for early-stage gastric cancer [J]. Mol Cancer, 2018, 17(1): 84. doi: 10.1186/s12943-018-0834-9.
[29] El-Ashmawy NE, Hussien FZ, El-Feky OA, et al. Serum LncRNA-ATB and FAM83H-AS1 as diagnostic/prognostic non-invasive biomarkers for breast cancer [J]. Life Sci, 2020, 259: 118193. doi: 10.1016/j.lfs.2020.118193.
[30] 王琳, 董颖. 长链非编码RNA LUCAT1在结直肠癌患者血清中的表达及其意义[J]. 临床血液学杂志(输血与检验), 2020, 33(6): 851-855. WANG Lin, DONG Ying. Expression and significance of serum long non-coding RNA LUCAT1 in colorectal cancer [J]. Journal of Clinical Hematology(Blood Transfusion & Laboratory Medicine), 2020, 33(6): 851-855.
[1] 林芸,谢燕秋. 乳腺癌患者生育力保护及保存[J]. 山东大学学报 (医学版), 2022, 60(9): 42-46.
[2] 张振伟,李佳,陈克明. IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移[J]. 山东大学学报 (医学版), 2022, 60(9): 74-84.
[3] 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43.
[4] 杨其峰,张宁. 精准医疗时代的乳腺癌前哨淋巴结活检[J]. 山东大学学报 (医学版), 2022, 60(8): 1-5.
[5] 孙丽娜,杜晓晓,张红娟,孟金来. 人类白细胞抗原G调控蜕膜自然杀伤细胞促进滋养细胞侵袭[J]. 山东大学学报 (医学版), 2022, 60(6): 41-45.
[6] 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58.
[7] 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24-29.
[8] 陈兆波,方敏,薛浩然,刘春艳. 去泛素化酶USP35促进非小细胞肺癌细胞迁移和侵袭[J]. 山东大学学报 (医学版), 2022, 60(4): 30-37.
[9] 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82.
[10] 修德健,高正文,宋婷婷,崔楠,崔静,孙健平. 生物信息学方法分析与宫颈癌有关联的基因[J]. 山东大学学报 (医学版), 2022, 60(10): 99-109.
[11] 冯鑫鑫,韩波,张丽,马孟洁,陈思宇. 长链非编码RNA NONHSAT247814.1在18例儿童心肌炎中的表达及体外细胞实验观察[J]. 山东大学学报 (医学版), 2022, 60(10): 27-32.
[12] 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16.
[13] 初竹秀,赵文静,李小燕,孔晓丽,马婷婷,江立玉,杨其峰. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报 (医学版), 2021, 59(9): 130-139.
[14] 王喆,刘玉洁,毛倩,管佩霞,包绮晗,李承圣,乔晓伟,潘庆忠,王素珍. 基于逆概率加权法的早期三阴性乳腺癌不同治疗方案的疗效评价[J]. 山东大学学报 (医学版), 2021, 59(8): 113-118.
[15] 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[2] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[3] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[4] 姜保东,马祥兴,王青,王茜,冯晓源,李克,于富华 . 脑CT静脉造影扫描时相及重建层厚的选择[J]. 山东大学学报(医学版), 2008, 46(11): 1084 -1086 .
[5] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .
[6] 李洧,李道卫,叶茜,高顺翠,姜淑娟. 经支气管镜针吸活检在纵隔疾病诊断中的价值[J]. 山东大学学报(医学版), 2008, 46(11): 1063 -1065 .
[7] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[8] 王晓菊1 ,汪明明2 ,徐皖苏2 ,赵胜梅3 ,崔速南2 ,李晓迎2 ,刘春华1
. 慢性HBV活动性感染者外周血淋巴细胞
泛素mRNA的表达及临床意义

[J]. 山东大学学报(医学版), 2009, 47(02): 58 -61 .
[9] 王旭平,赵玲,冯玉新,商林珊,刘金成,曹伟朋,朱晓音,辛华. 绞股蓝总苷对谷氨酸诱导的胎鼠大脑皮层神经元氧化性损伤保护机制的研究[J]. 山东大学学报(医学版), 2006, 44(6): 564 -567 .
[10] 王学萍,杨洪玲. 洛汀新治疗高血压50例报告[J]. 山东大学学报(医学版), 2007, (2): 213 .