山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (10): 9-16.doi: 10.6040/j.issn.1671-7554.0.2022.0282
封海岗1,刘国文2,曹洪1
FENG Haigang1, LIU Guowen2, CAO Hong1
摘要: 目的 探讨干扰有丝分裂阻滞缺陷2样蛋白1(MAD2L1)基因表达对乳腺癌(BC)细胞凋亡的影响及其机制。 方法 采用qRT-PCR检测正常乳腺上皮细胞系MCF-10A和4种BC细胞系(MDA-MB-231、MCF-7、SK-BR-3和BT-20)中MAD2L1 mRNA表达水平。将MAD2L1 siRNA转染至MDA-MB-231细胞中,qRT-PCR和Western blotting检测细胞中MAD2L1 mRNA和蛋白表达水平;MTT检测细胞增殖能力;流式细胞术法检测细胞凋亡率;Western blotting检测细胞中Bax、Bcl-2、cleaved-caspase-3、p-p38MAPK(Thr180/Thr182)和p38MAPK等蛋白表达水平。采用p38MAPK抑制剂SB203580联合处理上述细胞,Annexin V-FITC/PI法检测细胞凋亡率的变化;Western blotting检测Bax、Bcl-2、cleaved-caspase-3、p-p38MAPK和p38MAPK表达水平的变化。 结果 BC细胞系中MAD2L1 mRNA表达水平高于MCF-10A细胞,其中MDA-MB-231细胞最为显著。干扰MAD2L1基因可降低MDA-MB-231细胞中MAD2L1 mRNA和蛋白表达水平(tmRNA=10.51,PmRNA<0.001;t蛋白=18.30,P蛋白<0.001),同时抑制细胞增殖(F组别=243.36、F时间=44.00、F组别×时间=9.881,P均<0.001),促进细胞凋亡(t=9.10,P<0.001),并上调Bax、cleaved-caspase-3和p-p38MAPK蛋白表达水平(tBax=15.05,PBax<0.001;tcleaved-caspase-3=5.26,Pcleaved-caspase-3=0.006;tp-p38MAPK=28.46,Pp-p38MAPK<0.001),下调Bcl-2蛋白表达水平(tBcl-2=14.23,P<0.001)。然而,SB203580处理可抑制MAD2L1基因干扰对MDA-MB-231细胞凋亡的诱导作用(P=0.002)。 结论 干扰MAD2L1基因表达可抑制MDA-MB-231细胞增殖,并诱导其凋亡,其作用机制可能与激活p38MAPK信号通路有关。
中图分类号:
[1] Cerezo MV, Soria-Reyes LM, Alarcón R, et al. The satisfaction with life scale in breast cancer patients: psychometric properties [J]. Int J Clin Health Psychol, 2022, 22(1): 100274. [2] Wu HJ, Chu PY. Recent discoveries of macromolecule- and cell-based biomarkers and therapeutic implications in breast cancer [J]. Int J Mol Sci, 2021, 22(2): 636. [3] Wang X, Gao C, Feng F, et al. Construction and analysis of competing endogenous RNA networks for breast cancer based on TCGA dataset [J]. Biomed Res Int, 2020, 2020: 4078596. doi: 10.1155/2020/4078596. [4] Zhu XF, Yi M, He J, et al. Pathological significance of MAD2L1 in breast cancer: an immunohistochemical study and meta analysis [J]. Int J Clin Exp Pathol, 2017, 10(9): 9190-9201. [5] Ding X, Duan H, Luo H. Identification of core gene expression signature and key pathways in colorectal cancer [J]. Front Genet, 2020, 11: 45. doi: 10.3389/fgene.2020.00045. [6] Wang Y, Wang F, He J, et al. miR-30a-3p targets MAD2L1 and regulates proliferation of gastric cancer cells [J]. Onco Targets Ther, 2019, 12: 11313-11324. doi: 10.2147/OTT.S222854. [7] Li J, He X, Wu X, et al. miR-139-5p inhibits lung adenocarcinoma cell proliferation, migration, and invasion by targeting MAD2L1 [J]. Comput Math Methods Med, 2020, 2020: 2953598. doi: 10.1155/2020/2953598. [8] Li Y, Bai W, Zhang J. MiR-200c-5p suppresses proliferation and metastasis of human hepatocellular carcinoma(HCC)via suppressing MAD2L1 [J]. Biomed Pharmacother, 2017, 92:1038-1044. doi: 10.1016/j.biopha.2017.05.092. [9] Wu X, Peng L, Zhang Y, et al. Identification of key genes and pathways in cervical cancer by bioinformatics analysis [J]. Int J Med Sci, 2019, 16(6): 800-812. [10] Su L, Zhang J, Zhang X, et al. Identification of cell cycle as the critical pathway modulated by exosome-derived microRNAs in gallbladder carcinoma [J]. Med Oncol, 2021, 38(12): 141. [11] Gao Y, Liu Y, Sun L, et al. MAD2L1 functions as a novel diagnostic and predictive biomarker in cholangiocarcinoma[J]. Genet Test Mol Biomarkers, 2021, 25(11): 685-695. [12] Xia T, Meng L, Zhao Z, et al. Bioinformatics prediction and experimental verification identify MAD2L1 and CCNB2 as diagnostic biomarkers of rhabdomyosarcoma [J]. Cancer Cell Int, 2021, 21(1): 634. [13] Wu J, Lv Q, Huang H, et al. Screening and identification of key biomarkers in inflammatory breast cancer through integrated bioinformatic analyses [J]. Genet Test Mol Biomarkers, 2020, 24(8): 484-491. [14] Ben-Hamo R, Jacob Berger A, Gavert N, et al. Predicting and affecting response to cancer therapy based on pathway-level biomarkers [J]. Nat Commun, 2020, 11(1): 3296. [15] Wang Z, Katsaros D, Shen Y, et al. Biological and clinical significance of MAD2L1 and BUB1, genes frequently appearing in expression signatures for breast cancer prognosis [J]. PLoS One, 2015, 10(8): e0136246. [16] Liu X, Chen Y, Li Y, et al. Targeting mitosis exit: a brake for cancer cell proliferation[J]. BiochimBiophys Acta Rev Cancer, 2019, 1871(1): 179-191. [17] Ding X, Fu Q, Chen W, et al. Targeting of MAD2L1 by miR-515-5p involves the regulation of cell cycle arrest and apoptosis of colorectal cancer cells [J]. Cell Biol Int, 2022, 46(5): 840-848. [18] Qi L, Zhou B, Chen J, et al. Significant prognostic values of differentially expressed-aberrantly methylated hub genes in breast cancer [J]. J Cancer, 2019, 10(26): 6618-6634. [19] Young ND, Harris J, Evangelista M, et al. Diversity in the intrinsic apoptosis pathway of nematodes [J]. Commun Biol, 2020, 3(1): 49-63. [20] Roche O, Fernández-Aroca DM, Arconada-Luque E, et al. p38β and cancer: the beginning of the road [J]. Int J Mol Sci, 2020, 21(20): 7524. [21] 万强, 杨玉萍, 刘中勇. 丹参酮ⅡA通过抑制p38MAPK通路减轻PM2.5对血管内皮细胞的损伤[J].中国病理生理杂志, 2016, 32(4): 597-601. WAN Qiang, YANG Yuping, LIU Zhongyong. Tanshinone IIA attenuates PM2.5-induced vascular endothelial cell injury via p38 MAPK signal pathway [J]. Chinese Journal of Pathophysiology, 2016, 32(4): 597-601. [22] 罗慧臣,胡丹慧,张济.miR-203-3p靶向TREM1基因调控TGF-β1/p38MAPK信号通路对狼疮性肾炎小鼠肾小管上皮细胞增殖和凋亡的影响[J].山东大学学报(医学版), 2021, 59(3): 18-25. LUO Huichen, HU Danhui, ZHANG Ji. Effect of miR-203-3p targeted TREM1 gene on the regulation of TGF-β1/p38MAPK signaling pathway on the proliferation and apoptosisof renal tubular epithelial cells in lupus nephritis mice [J]. Journal of Shandong University(Health Sciences), 2021, 59(3): 18-25. [23] 朱金艳, 叶静怡, 刘志龙,等. 重楼单体PP-11对人乳腺癌MDA-MB-231细胞增殖的抑制作用及其机制[J].中国病理生理杂志, 2021, 37(2): 246-254. ZHU Jinyan,YE Jingyi, LIU Zhilong, et al. Inhibitory effect of PP-11, a monomer isolated from Paris polyphylla, onproliferation of human breast cancer MDA-MB-231 cells and its mechanism[J]. Chinese Journal of Pathophysiology, 2021, 37(2): 246-254. |
[1] | 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-. |
[2] | 林芸,谢燕秋. 乳腺癌患者生育力保护及保存[J]. 山东大学学报 (医学版), 2022, 60(9): 42-46. |
[3] | 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58. |
[4] | 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43. |
[5] | 杨其峰,张宁. 精准医疗时代的乳腺癌前哨淋巴结活检[J]. 山东大学学报 (医学版), 2022, 60(8): 1-5. |
[6] | 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24-29. |
[7] | 初竹秀,赵文静,李小燕,孔晓丽,马婷婷,江立玉,杨其峰. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报 (医学版), 2021, 59(9): 130-139. |
[8] | 王喆,刘玉洁,毛倩,管佩霞,包绮晗,李承圣,乔晓伟,潘庆忠,王素珍. 基于逆概率加权法的早期三阴性乳腺癌不同治疗方案的疗效评价[J]. 山东大学学报 (医学版), 2021, 59(8): 113-118. |
[9] | 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84. |
[10] | 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89. |
[11] | 孔雪,李娟,段伟丽,史爽,李培龙,杜鲁涛,毛海婷,王传新. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 70-78. |
[12] | 罗慧臣,胡丹慧,张济. miR-203-3p靶向TREM1基因调控TGF-β1/p38MAPK信号通路对狼疮性肾炎小鼠肾小管上皮细胞增殖和凋亡的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 18-25. |
[13] | 薛源,林雪艳,徐歌,田永杰. 低氧诱导因子-1α在子宫内膜异位症患者血清中的表达和对在位子宫内膜间质细胞上皮-间质转化的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 41-47. |
[14] | 郭田,付依林,高聆,宋勇峰,付国斌,耿冲,王潍博. 142例女性乳腺癌患者临床特征与甲状腺激素水平的关联分析[J]. 山东大学学报 (医学版), 2020, 58(6): 53-59. |
[15] | 杨雪梅,李娟,王一凡,李培龙,王允山,杜鲁涛,王传新. 3-lncRNAs预后模型在HER2阳性乳腺癌预后评价中的意义[J]. 山东大学学报 (医学版), 2020, 58(5): 69-76. |
|