您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (5): 69-76.doi: 10.6040/j.issn.1671-7554.0.2020.117

• • 上一篇    

3-lncRNAs预后模型在HER2阳性乳腺癌预后评价中的意义

杨雪梅1,李娟1,王一凡1,李培龙1,王允山1,杜鲁涛1,王传新1,2   

  1. 1.山东大学第二医院检验医学中心,山东 济南 250033; 2.山东省肿瘤标志物检测工程实验室,山东 济南 250033
  • 发布日期:2022-09-27
  • 通讯作者: 王传新. E-mail:cxwang@sdu.edu.cn
  • 基金资助:
    山东省自然科学基金(ZR2019PH074);山东大学基本科研业务费专项资金资助(2018JC002)

Significance of a three-lncRNAs signature on the prediction of survival for HER2 positive breast cancer patients

YANG Xuemei1, LI Juan1, WANG Yifan1, LI Peilong1, WANG Yunshan1, DU Lutao1, WANG Chuanxin1,2   

  1. 1. Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medcine, Shandong University, Jinan 250033, Shandong, China;
    2. Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan 250033, Shandong, China
  • Published:2022-09-27

摘要: 目的 利用癌症基因组图谱(TCGA)数据库,构建预测人表皮生长因子受体2(HER2)阳性乳腺癌预后的长链非编码RNA(lncRNA)风险评分模型。 方法 获取TCGA数据库中HER2阳性乳腺癌和正常乳腺组织的RNA表达谱及临床病理数据。基于R语言的“DESeq2”软件包、单因素Cox回归分析和Kaplan-Meier生存曲线,筛选HER2阳性乳腺癌中差异表达并与预后有统计学意义关联性的lncRNAs。利用多因素Cox逐步回归模型在训练集中构建lncRNA风险评分模型,Kaplan-Meier生存曲线评估该模型在训练集、验证集和总样本集以及不同亚组中的预测效能。 结果 从TCGA数据库中共获得161例HER2阳性乳腺癌和113例正常乳腺组织的RNA表达谱,“DESeq2”差异分析得到1 332个HER2阳性乳腺癌中差异表达的lncRNAs,单因素Cox回归分析和Kaplan-Meier生存曲线发现其中25个lncRNAs与预后有统计学意义的关联性,利用多因素Cox逐步回归模型建立了基于3-lncRNAs的风险评分模型:风险评分=0.710×表达量LINC01833+1.869×表达量LINC00536+2.992×表达量LINC02725。该模型可有效区分HER2阳性乳腺癌人群中预后高风险组和低风险组,Kaplan-Meier生存曲线提示高风险组生存率低于低风险组,差异有统计学意义。同时,该模型在总样本集中的时间依赖性受试者工作特征(ROC)曲线下面积(AUC)高达0.825,高于TNM分期(AUC=0.605)。此外,在TNM Ⅰ-Ⅱ期亚组、ER阳性亚组、PR阴性亚组和PR阳性亚组中均可有效鉴别预后较差的高风险患者。 结论 基于LINC01833、LINC00536和LINC02725的风险评分模型可有效预测HER2阳性乳腺癌患者的预后,为HER2阳性乳腺癌的临床管理提供参考依据。

关键词: 人表皮生长因子受体2, 乳腺癌, 长链非编码RNA, 预后, Cox回归模型

Abstract: Objective To construct a long non-coding RNA(lncRNA)-based signature for predicting the survival of human epidermal growth factor receptor-2(HER2)positive breast cancer patients by using The Cancer Genome Atlas(TCGA)database. Methods RNA expression profiles and clinical data were downloaded from TCGA database. Differentially expression lncRNAs(DELs)were identified by the “DESeq2” package in R. Univariate Cox proportional hazards regression(CPHR)analysis and Kaplan-Meier curve were then used to identify prognostic DELs. Stepwise multivariate CPHR model was performed for constructing a lncRNAs-based prognostic signature in the training set. Kaplan-Meier curve was used to assess the predictive performance of the signature in the training set, validation set, total set and other subgroups. Results Based on TCGA database, 1 332 DELs were identified between 161 HER2 positive breast cancer and 113 normal cases by using the “DESeq2” package. Out of these DELs, 25 DELs were found to be associated with overall survival(OS)according to the univariate CPHR analysis and Kaplan-Meier curve. In the training set, a 3-lncRNAs signature was constructed: risk score=0.710 × ExpressionLINC01833+1.869×ExpressionLINC00536+2.992×ExpressionLINC02725. This signature could effectively pick out high-risk group and low-risk group. Kaplan-Meier curve revealed that high-risk group tended to shorten survival. The area under the time-dependent receiver operating characteristic(ROC)curve of the molecular signature was 0.825, which was superior to TNM stage(AUC=0.605). Furthermore, the 3-lncRNAs signature could still distinguish the high-risk patients who had a shorter OS from the low-risk patients even in the TNM Ⅰ-Ⅱ subgroup, ER positive subgroup, PR negative subgroup and PR positive subgroup. Conclusion The proposed 3-lncRNAs signature based on LINC01833, LINC00536, and LINC02725 exhibits satisfactory individual prediction of survival for HER2 positive breast cancer, which may improve clinical management of HER2 positive breast cancer.

Key words: Human epidermal growth factor receptor-2, Breast cancer, Long non-coding RNA, Prognosis, Cox regression model

中图分类号: 

  • R737.9
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[2] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1): 7-30.
[3] Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours[J]. Nature, 2000, 406(6797): 747-752.
[4] The Lancet. Biosimilars: a new era in access to breast cancer treatment[J]. Lancet, 2020, 395(10217): 2. doi: 10.1016/S0140-6736(19)33172-1.
[5] Gullo G, Walsh N, Fennelly D, et al. Impact of timing of trastuzumab initiation on long-term outcome of patients with early-stage HER2-positive breast cancer: the “one thousand HER2 patients” project[J]. Br J Cancer, 2018, 119(3): 374-380.
[6] Murthy P, Kidwell KM, Schott AF, et al. Clinical predictors of long-term survival in HER2-positive metastatic breast cancer[J]. Breast Cancer Res Treat, 2016, 155(3): 589-595.
[7] Jathar S, Kumar V, Srivastava J, et al. Technological developments in lncRNA biology[J]. Adv Exp Med Biol, 2017, 1008: 283-323. doi: 10.1007/978-981-10-5203-3_10.
[8] Sarropoulos I, Marin R, Cardoso-Moreira M, et al. Developmental dynamics of lncRNAs across mammalian organs and species[J]. Nature, 2019, 571(7766): 510-514.
[9] Prajapati B, Fatma M, Fatima M, et al. Identification of lncRNAs associated with neuroblastoma in cross-sectional databases: potential biomarkers[J]. Front Mol Neurosci, 2019, 12: 293. doi: 10.3389/fnmol.2019.00293.
[10] Keshavarz M, Asadi MH, Riahi-Madvar A. Upregulation of pluripotent long noncoding RNA ES3 in HER2-positive breast cancer[J]. J Cell Biochem, 2019, 120(10): 18398-18405.
[11] Yousefi H, Maheronnaghsh M, Molaei F, et al. Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance[J]. Oncogene, 2020, 39(5): 953-974.
[12] Klapper LN, Glathe S, Vaisman N, et al. The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors[J]. Proc Natl Acad Sci U S A, 1999, 96(9): 4995-5000.
[13] Hayes DF. HER2 and breast cancer-a phenomenal success story[J]. N Engl J Med, 2019, 381(13): 1284-1286.
[14] Tang M, Schaffer A, Kiely BE, et al. Treatment patterns and survival in HER2-positive early breast cancer: a whole-of-population Australian cohort study(2007-2016)[J]. Br J Cancer, 2019, 121(11): 904-911.
[15] Siow ZR, De Bore RH, Lindeman GJ, et al. Spotlight on the utility of the Oncotype DX breast cancer assay[J]. Int J Womens Health, 2018, 10:89-100. doi: 10.2147/IJWH.S124520.
[16] Pu M, Messer K, Davies SR, et al. Research-based PAM50 signature and long-term breast cancer survival[J]. Breast Cancer Res Treat, 2020, 179(1): 197-206.
[17] Mane R, Chew E, Phua KS, et al. Assessment of the prognostic and predictive utility of the Breast Cancer Index(BCI): an NCIC CTG MA.14 study[J]. Breast Cancer Res, 2016, 18(1):1. doi: 10.1186/s13058-015-0660-6.
[18] 欧开萍, 罗扬, 吕剑虹, 等. HER2阳性早期乳腺癌患者的预后分析[J].癌症进展, 2019, 17(16): 1935-1938. OU Kaiping, LUO Yang, LYU Jianhong, et al. Prognostic analysis of the patients with early HER2 postive breast cancer[J]. Oncology Progress, 2019, 17(16): 1935-1938.
[19] Li J, Chen Z, Su K, et al. Clinicopathological classification and traditional prognostic indicators of breast cancer[J]. Int J Clin Exp Pathol, 2015, 8(7): 8500-8505.
[20] Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity[J]. Cell, 2018, 172(1-2): 373-386.
[21] Schettini F, Pascual T, Conte B, et al. HER2-enriched subtype and pathological complete response in HER2-positive breast cancer: a systematic review and meta-analysis[J]. Cancer Treat Rev, 2020, 84: 101965. doi: 10.1016/j.ctrv.2020.101965.
[22] Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3): 393-407.
[23] Huarte M. The emerging role of lncRNAs in cancer [J]. Nat Med, 2015, 21(11): 1253-1261.
[24] Mendell JT. Targeting a long noncoding RNA in breast cancer[J]. N Engl J Med, 2016, 374(23): 2287-2289.
[25] Li R, Zhang L, Qin Z, et al. High LINC00536 expression promotes tumor progression and poor prognosis in bladder cancer[J]. Exp Cell Res, 2019, 378(1):32-40.
[26] Fan CN, Ma L, Liu N. Systematic analysis of lncRNA-miRNA-mRNA competing endogenous RNA network identifies four-lncRNA signature as a prognostic biomarker for breast cancer[J]. J Transl Med, 2018, 16(1): 264. doi: 10.1186/s12967-018-1640-2.
[27] Wang JJ, Huang YQ, Song W, et al. Comprehensive analysis of the lncRNA-associated competing endogenous RNA network in breast cancer[J]. Oncol Rep, 2019, 42(6): 2572-2582.
[28] Li H, Gao C, Liu L, et al. 7-lncRNA assessment model for monitoring and prognosis of breast cancer patients: based on Cox regression and co-expression analysis[J]. Front Oncol, 2019, 9: 1348. doi: 10.3389/fonc.2019.01348.
[1] 林芸,谢燕秋. 乳腺癌患者生育力保护及保存[J]. 山东大学学报 (医学版), 2022, 60(9): 42-46.
[2] 郑苏,陈述花,李华,邓劼,陈春红,王晓慧,冯卫星,韩萧迪,张雨佳,李娜,李莫,方方. 脑电变化和BASED评分与54例婴儿痉挛症促肾上腺皮质激素疗效的相关性[J]. 山东大学学报 (医学版), 2022, 60(9): 91-96.
[3] 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112.
[4] 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49.
[5] 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43.
[6] 杨其峰,张宁. 精准医疗时代的乳腺癌前哨淋巴结活检[J]. 山东大学学报 (医学版), 2022, 60(8): 1-5.
[7] 张玉凤,徐敏,邢秀丽,逄曙光,户克庆. 689例非ST段抬高型心肌梗死患者的临床流行病学特征[J]. 山东大学学报 (医学版), 2022, 60(7): 118-122.
[8] 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58.
[9] 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24-29.
[10] 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58.
[11] 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82.
[12] 初竹秀,赵文静,李小燕,孔晓丽,马婷婷,江立玉,杨其峰. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报 (医学版), 2021, 59(9): 130-139.
[13] 陈立晓,英信江,陈歆维,王菲,孙臻峰,董频. 下咽鳞癌蛋白质谱鉴定及预后靶分子筛选[J]. 山东大学学报 (医学版), 2021, 59(9): 140-147.
[14] 王喆,刘玉洁,毛倩,管佩霞,包绮晗,李承圣,乔晓伟,潘庆忠,王素珍. 基于逆概率加权法的早期三阴性乳腺癌不同治疗方案的疗效评价[J]. 山东大学学报 (医学版), 2021, 59(8): 113-118.
[15] 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!