山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (5): 69-76.doi: 10.6040/j.issn.1671-7554.0.2020.117
• • 上一篇
杨雪梅1,李娟1,王一凡1,李培龙1,王允山1,杜鲁涛1,王传新1,2
YANG Xuemei1, LI Juan1, WANG Yifan1, LI Peilong1, WANG Yunshan1, DU Lutao1, WANG Chuanxin1,2
摘要: 目的 利用癌症基因组图谱(TCGA)数据库,构建预测人表皮生长因子受体2(HER2)阳性乳腺癌预后的长链非编码RNA(lncRNA)风险评分模型。 方法 获取TCGA数据库中HER2阳性乳腺癌和正常乳腺组织的RNA表达谱及临床病理数据。基于R语言的“DESeq2”软件包、单因素Cox回归分析和Kaplan-Meier生存曲线,筛选HER2阳性乳腺癌中差异表达并与预后有统计学意义关联性的lncRNAs。利用多因素Cox逐步回归模型在训练集中构建lncRNA风险评分模型,Kaplan-Meier生存曲线评估该模型在训练集、验证集和总样本集以及不同亚组中的预测效能。 结果 从TCGA数据库中共获得161例HER2阳性乳腺癌和113例正常乳腺组织的RNA表达谱,“DESeq2”差异分析得到1 332个HER2阳性乳腺癌中差异表达的lncRNAs,单因素Cox回归分析和Kaplan-Meier生存曲线发现其中25个lncRNAs与预后有统计学意义的关联性,利用多因素Cox逐步回归模型建立了基于3-lncRNAs的风险评分模型:风险评分=0.710×表达量LINC01833+1.869×表达量LINC00536+2.992×表达量LINC02725。该模型可有效区分HER2阳性乳腺癌人群中预后高风险组和低风险组,Kaplan-Meier生存曲线提示高风险组生存率低于低风险组,差异有统计学意义。同时,该模型在总样本集中的时间依赖性受试者工作特征(ROC)曲线下面积(AUC)高达0.825,高于TNM分期(AUC=0.605)。此外,在TNM Ⅰ-Ⅱ期亚组、ER阳性亚组、PR阴性亚组和PR阳性亚组中均可有效鉴别预后较差的高风险患者。 结论 基于LINC01833、LINC00536和LINC02725的风险评分模型可有效预测HER2阳性乳腺癌患者的预后,为HER2阳性乳腺癌的临床管理提供参考依据。
中图分类号:
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. [2] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1): 7-30. [3] Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours[J]. Nature, 2000, 406(6797): 747-752. [4] The Lancet. Biosimilars: a new era in access to breast cancer treatment[J]. Lancet, 2020, 395(10217): 2. doi: 10.1016/S0140-6736(19)33172-1. [5] Gullo G, Walsh N, Fennelly D, et al. Impact of timing of trastuzumab initiation on long-term outcome of patients with early-stage HER2-positive breast cancer: the “one thousand HER2 patients” project[J]. Br J Cancer, 2018, 119(3): 374-380. [6] Murthy P, Kidwell KM, Schott AF, et al. Clinical predictors of long-term survival in HER2-positive metastatic breast cancer[J]. Breast Cancer Res Treat, 2016, 155(3): 589-595. [7] Jathar S, Kumar V, Srivastava J, et al. Technological developments in lncRNA biology[J]. Adv Exp Med Biol, 2017, 1008: 283-323. doi: 10.1007/978-981-10-5203-3_10. [8] Sarropoulos I, Marin R, Cardoso-Moreira M, et al. Developmental dynamics of lncRNAs across mammalian organs and species[J]. Nature, 2019, 571(7766): 510-514. [9] Prajapati B, Fatma M, Fatima M, et al. Identification of lncRNAs associated with neuroblastoma in cross-sectional databases: potential biomarkers[J]. Front Mol Neurosci, 2019, 12: 293. doi: 10.3389/fnmol.2019.00293. [10] Keshavarz M, Asadi MH, Riahi-Madvar A. Upregulation of pluripotent long noncoding RNA ES3 in HER2-positive breast cancer[J]. J Cell Biochem, 2019, 120(10): 18398-18405. [11] Yousefi H, Maheronnaghsh M, Molaei F, et al. Long noncoding RNAs and exosomal lncRNAs: classification, and mechanisms in breast cancer metastasis and drug resistance[J]. Oncogene, 2020, 39(5): 953-974. [12] Klapper LN, Glathe S, Vaisman N, et al. The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors[J]. Proc Natl Acad Sci U S A, 1999, 96(9): 4995-5000. [13] Hayes DF. HER2 and breast cancer-a phenomenal success story[J]. N Engl J Med, 2019, 381(13): 1284-1286. [14] Tang M, Schaffer A, Kiely BE, et al. Treatment patterns and survival in HER2-positive early breast cancer: a whole-of-population Australian cohort study(2007-2016)[J]. Br J Cancer, 2019, 121(11): 904-911. [15] Siow ZR, De Bore RH, Lindeman GJ, et al. Spotlight on the utility of the Oncotype DX breast cancer assay[J]. Int J Womens Health, 2018, 10:89-100. doi: 10.2147/IJWH.S124520. [16] Pu M, Messer K, Davies SR, et al. Research-based PAM50 signature and long-term breast cancer survival[J]. Breast Cancer Res Treat, 2020, 179(1): 197-206. [17] Mane R, Chew E, Phua KS, et al. Assessment of the prognostic and predictive utility of the Breast Cancer Index(BCI): an NCIC CTG MA.14 study[J]. Breast Cancer Res, 2016, 18(1):1. doi: 10.1186/s13058-015-0660-6. [18] 欧开萍, 罗扬, 吕剑虹, 等. HER2阳性早期乳腺癌患者的预后分析[J].癌症进展, 2019, 17(16): 1935-1938. OU Kaiping, LUO Yang, LYU Jianhong, et al. Prognostic analysis of the patients with early HER2 postive breast cancer[J]. Oncology Progress, 2019, 17(16): 1935-1938. [19] Li J, Chen Z, Su K, et al. Clinicopathological classification and traditional prognostic indicators of breast cancer[J]. Int J Clin Exp Pathol, 2015, 8(7): 8500-8505. [20] Sachs N, de Ligt J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity[J]. Cell, 2018, 172(1-2): 373-386. [21] Schettini F, Pascual T, Conte B, et al. HER2-enriched subtype and pathological complete response in HER2-positive breast cancer: a systematic review and meta-analysis[J]. Cancer Treat Rev, 2020, 84: 101965. doi: 10.1016/j.ctrv.2020.101965. [22] Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3): 393-407. [23] Huarte M. The emerging role of lncRNAs in cancer [J]. Nat Med, 2015, 21(11): 1253-1261. [24] Mendell JT. Targeting a long noncoding RNA in breast cancer[J]. N Engl J Med, 2016, 374(23): 2287-2289. [25] Li R, Zhang L, Qin Z, et al. High LINC00536 expression promotes tumor progression and poor prognosis in bladder cancer[J]. Exp Cell Res, 2019, 378(1):32-40. [26] Fan CN, Ma L, Liu N. Systematic analysis of lncRNA-miRNA-mRNA competing endogenous RNA network identifies four-lncRNA signature as a prognostic biomarker for breast cancer[J]. J Transl Med, 2018, 16(1): 264. doi: 10.1186/s12967-018-1640-2. [27] Wang JJ, Huang YQ, Song W, et al. Comprehensive analysis of the lncRNA-associated competing endogenous RNA network in breast cancer[J]. Oncol Rep, 2019, 42(6): 2572-2582. [28] Li H, Gao C, Liu L, et al. 7-lncRNA assessment model for monitoring and prognosis of breast cancer patients: based on Cox regression and co-expression analysis[J]. Front Oncol, 2019, 9: 1348. doi: 10.3389/fonc.2019.01348. |
[1] | 林芸,谢燕秋. 乳腺癌患者生育力保护及保存[J]. 山东大学学报 (医学版), 2022, 60(9): 42-46. |
[2] | 郑苏,陈述花,李华,邓劼,陈春红,王晓慧,冯卫星,韩萧迪,张雨佳,李娜,李莫,方方. 脑电变化和BASED评分与54例婴儿痉挛症促肾上腺皮质激素疗效的相关性[J]. 山东大学学报 (医学版), 2022, 60(9): 91-96. |
[3] | 王丽慧,高敏,孔北华. 子宫血管肉瘤2例报告并文献复习[J]. 山东大学学报 (医学版), 2022, 60(9): 108-112. |
[4] | 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49. |
[5] | 贺士卿,李皖皖,董书晴,牟婧怡,刘宇莹,魏思雨,刘钊,张家新. 基于数据库构建乳腺癌焦亡相关基因的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(8): 34-43. |
[6] | 杨其峰,张宁. 精准医疗时代的乳腺癌前哨淋巴结活检[J]. 山东大学学报 (医学版), 2022, 60(8): 1-5. |
[7] | 张玉凤,徐敏,邢秀丽,逄曙光,户克庆. 689例非ST段抬高型心肌梗死患者的临床流行病学特征[J]. 山东大学学报 (医学版), 2022, 60(7): 118-122. |
[8] | 李琳琳,王凯. 基于生物信息学预测肝细胞癌预后基因[J]. 山东大学学报 (医学版), 2022, 60(5): 50-58. |
[9] | 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24-29. |
[10] | 郑昊天,王光辉,赵小刚,王亚东,曾榆凯,杜贾军. 基于数据库LKB1突变肺腺癌DNA异常甲基化位点构建的预后风险模型[J]. 山东大学学报 (医学版), 2022, 60(3): 51-58. |
[11] | 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82. |
[12] | 初竹秀,赵文静,李小燕,孔晓丽,马婷婷,江立玉,杨其峰. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报 (医学版), 2021, 59(9): 130-139. |
[13] | 陈立晓,英信江,陈歆维,王菲,孙臻峰,董频. 下咽鳞癌蛋白质谱鉴定及预后靶分子筛选[J]. 山东大学学报 (医学版), 2021, 59(9): 140-147. |
[14] | 王喆,刘玉洁,毛倩,管佩霞,包绮晗,李承圣,乔晓伟,潘庆忠,王素珍. 基于逆概率加权法的早期三阴性乳腺癌不同治疗方案的疗效评价[J]. 山东大学学报 (医学版), 2021, 59(8): 113-118. |
[15] | 褚晏,刘端瑞,朱文帅,樊荣,马晓丽,汪运山,郏雁飞. DNA甲基化转移酶在胃癌中的表达及其临床意义[J]. 山东大学学报 (医学版), 2021, 59(7): 1-9. |
|