您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (7): 67-71.doi: 10.6040/j.issn.1671-7554.0.2020.0486

• • 上一篇    

101例脑小血管病患者脑微出血危险因素的回顾性分析

徐玉香1,2,刘煜东1,3,张蓬1,3,段瑞生1,3   

  1. 1. 山东大学附属山东省千佛山医院神经内科, 山东 济南 250014;2. 济南市第五人民医院神经内科, 山东 济南 250022; 3. 山东第一医科大学第一附属医院神经内科, 山东 济南 250014
  • 发布日期:2020-07-10
  • 通讯作者: 段瑞生. E-mail:ruisheng_duan@ yahoo.com
  • 基金资助:
    山东第一医科大学学术提升计划(2019QL013)

A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease

XU Yuxiang1,2, LIU Yudong1,3, ZHANG Peng1,3, DUAN Ruisheng1,3   

  1. 1. Department of Neurology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250014, Shandong, China;
    2. Department of Neurology, The 5th Peoples Hospital of Jinan, Jinan 250022, Shandong, China;
    3. Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong, China
  • Published:2020-07-10

摘要: 目的 探讨脑小血管病(CSVD)患者脑微出血(CMBs)的独立危险因素。 方法 回顾性收集符合脑小血管病影像学诊断的患者101例,按是否存在CMBs分为CMBs组和非CMBs组,统计学分析识别CMBs的危险因素和保护因素。 结果 与CSVD中非CMBs组患者比较,CMBs组患者中高血压所占比例较高(χ2=9.879, P=0.002),超敏C反应蛋白(hs-CRP)(t=2.294, P=0.024)、同型半胱氨酸(Hcy)(t=2.193, P=0.031)、半胱氨酸蛋白酶抑制剂C(Cys-C)(t=2.160, P=0.034)、脂蛋白a(Lpa)(t=4.247, P<0.001)水平较高,低密度脂蛋白胆固醇(LDL-c)(t=-3.342, P=0.001)水平较低。Logistic回归分析结果显示,高血压(P=0.002, OR=6.706, 95%CI:2.011~22.362)、hs-CRP(P=0.049, OR=1.279,95%CI:1.001~1.635)、Lpa(P=0.001,OR=1.006,95%CI:1.003~1.009)和LDL-c(P=0.039, OR=0.472,95%CI:0.232~0.963)与CMBs独立相关。 结论 高血压、hs-CRP、Lpa是CMBs的独立危险因素,LDL-c是CMBs的保护因素。

关键词: 脑微出血, 超敏C反应蛋白, 低密度脂蛋白胆固醇, 脂蛋白a

Abstract: Objective To investigate the independent risk factors of cerebral microbleeds(CMBs)in patients with cerebral small vessel disease(CSVD). Methods A total of 101 patients who met the imaging diagnostic criteria of CSVD were divided into CMBs group and non-CMBs group. The risk factors and protective factors of CMBs were identified with statistical analysis. Results Compared with non-CMBs group, CMBs group had a higher incidence of hypertension(χ2=9.879, P=0.002), higher levels of high-sensitivity C-reactive protein(hs-CRP)(t=2.294, P=0.024), homocysteine(Hcy)(t=2.193, P=0.031), cystatin C(Cys-C)(t=2.160, P=0.034)and lipoprotein a(Lpa)(t=4.247, P<0.001), but lower level of low-density lipoprotein cholesterol(LDL-c)(t=-3.342, P=0.001). Logistic regression analysis showed that hypertension(P=0.002, OR=6.706, 95%CI: 2.011-22.362), hs-CRP(P=0.049, OR=1.279, 95%CI:1.001-1.635), Lpa(P=0.001, OR=1.006, 95%CI:1.003-1.009)and LDL-c(P=0.039, OR=0.472, 95%CI: 0.232-0.963)were independently correlated with CMBs. Conclusion Hypertension, hs-CRP and Lpa are the independent risk factors of CMBs, whereas LDL-c is a protective factor.

Key words: Cerebral microbleeds, High-sensitivity C-reactive protein, Low-density lipoprotein cholesterol, Lipoprotein a

中图分类号: 

  • R743.9
[1] Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges [J]. Lancet Neurol, 2010, 9(7): 689-701.
[2] Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration [J]. Lancet Neurol, 2013, 12(8): 822-838.
[3] Martinez-Ramirez S, Pontes-Neto OM, Dumas AP, et al. Topography of dilated perivascular spaces in subjects from a memory clinic cohort [J]. Neurology, 2013, 80(17): 1551-1556.
[4] van Agtmaal MJM, Houben A, Pouwer F, et al. Association of microvascular dysfunction with late-life depression: a systematic review and meta-analysis [J]. JAMA Psychiatry, 2017, 74(7): 729-739.
[5] Lee J, Sohn EH, Oh E, et al. Characteristics of cerebral microbleeds [J]. Dement Neurocogn Disord, 2018, 17(3): 73-82.
[6] Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation [J]. Lancet Neurol, 2009, 8(2): 165-174.
[7] Shoamanesh A, Kwok CS, Benavente O. Cerebral microbleeds: histopathological correlation of neuroimaging [J]. Cerebrovasc Dis, 2011, 32(6): 528-534.
[8] Haller S, Vernooij MW, Kuijer JPA, et al. Cerebral microbleeds: imaging and clinical significance [J]. Radiology, 2018, 287(1): 11-28.
[9] Wu Y, Chen T. An up-to-date review on cerebral microbleeds [J]. J Stroke Cerebrovasc Dis, 2016, 25(6): 1301-1306.
[10] Romero JR, Preis SR, Beiser A, et al. Risk factors, stroke prevention treatments, and prevalence of cerebral microbleeds in the Framingham Heart Study [J]. Stroke, 2014, 45(5): 1492-1494.
[11] Akoudad S, Darweesh SK, Leening MJ, et al. Use of coumarin anticoagulants and cerebral microbleeds in the general population [J]. Stroke, 2014, 45(11): 3436-3439.
[12] Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting [J]. Brain, 2007, 130(Pt 8): 1988-2003.
[13] Liu W, Liu R, Sun W, et al. Different impacts of blood pressure variability on the progression of cerebral microbleeds and white matter lesions [J]. Stroke, 2012, 43(11): 2916-2922.
[14] Ferretti G, Bacchetti T, Johnston TP, et al. Lipoprotein(a): a missing culprit in the management of athero-thrombosis? [J]. J Cell Physiol, 2018, 233(4): 2966-2981.
[15] Low A, Mak E, Rowe JB, et al. Inflammation and cerebral small vessel disease: a systematic review [J]. Ageing Res Rev, 2019, 53: 100916. doi: 10.1016/j.arr.2019.100916.
[16] Ma C, Na M, Neumann S, et al. Low-density lipoprotein cholesterol and risk of hemorrhagic stroke: a systematic review and dose-response meta-analysis of prospective studies [J]. Curr Atheroscler Rep, 2019, 21(12): 52.
[17] Lee SH, Lee ST, Kim BJ, et al. Dynamic temporal change of cerebral microbleeds: long-term follow-up MRI study [J]. PLoS One, 2011, 6(10): e25930. doi: 10.1371/journal. pone. 0025930.
[18] Bruckdorfer KR, Demel RA, De Gier J, et al. The effect of partial replacements of membrane cholesterol by other steroids on the osmotic fragility and glycerol permeability of erythrocytes [J]. Biochim Biophys Acta, 1969, 183(2): 334-345.
[19] Rosenson RS, Lowe GD. Effects of lipids and lipoproteins on thrombosis and rheology [J]. Atherosclerosis, 1998, 140(2): 271-280.
[20] Lee SH, Bae HJ, Yoon BW, et al. Low concentration of serum total cholesterol is associated with multifocal signal loss lesions on gradient-echo magnetic resonance imaging: analysis of risk factors for multifocal signal loss lesions [J]. Stroke, 2002, 33(12): 2845-2849.
[21] Ma Y, Li Z, Chen L, et al. Blood lipid levels, statin therapy and the risk of intracerebral hemorrhage [J]. Lipids Health Dis, 2016, 15: 43. doi: 10.1186/s12944-016-0213-8.
[22] Mitaki S, Nagai A, Oguro H, et al. C-reactive protein levels are associated with cerebral small vessel-related lesions [J]. Acta Neurol Scand, 2016, 133(1): 68-74.
[23] Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells [J]. Circulation, 2000, 102(18): 2165-2168.
[24] Verma S, Li SH, Badiwala MV, et al. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein [J]. Circulation, 2002, 105(16): 1890-1896.
[25] Khreiss T, Jozsef L, Potempa LA, et al. Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells [J]. Circulation, 2004, 109(16): 2016-2022.
[26] Kaaouana T, de Rochefort L, Samaille T, et al. 2D harmonic filtering of MR phase images in multicenter clinical setting: toward a magnetic signature of cerebral microbleeds [J]. Neuroimage, 2015, 104: 287-300. doi: 10.1016/j.neuroimage.2014.08.024.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!