山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (7): 7-14.doi: 10.6040/j.issn.1671-7554.0.2019.1007
• • 上一篇
张宝文1,雷香丽1,李瑾娜2,罗湘俊1,邹容1
ZHANG Baowen1, LEI Xiangli1, LI Jinna2, LUO Xiangjun1, ZOU Rong1
摘要: 目的 探讨miR-21-5p对2型糖尿病肾病(T2DN)小鼠肾组织中组织金属蛋白酶组织抑制因子3(TIMP3)表达以及对肾脏系膜细胞增殖及细胞外基质堆积的影响。 方法 选取10只雄性db/m小鼠作为正常对照(Control)组,另选30只SPF级雄性db/db T2DN小鼠随机分成模型(T2DN)组、miR-21-5p激动剂(miR-21-5p agomir)组和miR-21-5p拮抗剂(miR-21-5p antagomir)组,每组10只。分别给予生理盐水、miR-21-5p agomir、miR-21-5p antagomir尾静脉注射,每3 d注射1次,共7次。qRT-PCR检测各组小鼠肾脏组织中miR-21-5p表达水平;ELISA法检测各组小鼠24 h尿蛋白(Upro/24 h)、肌酐(Scr)和尿素氮(BUN)的表达水平;HE染色观察各组小鼠肾脏病理变化;PAS染色观察小鼠肾小球细胞外基质堆积情况;Western bloting法检测肾组织TIMP3、Col IV及FN蛋白的表达水平;双荧光素酶报告基因实验检测miR-21-5p和TIMP3的靶向关系。 结果 与Control组比较,T2DN组小鼠Upro/24 h、Scr和BUN水平均升高(tUpro/24 h=84.67,P<0.001;tScr=16.81,P<0.001;tBUN=19.26,P<0.001),miR-21-5p agomir组小鼠Upro/24 h、Scr和BUN水平均升高(tUpro/24 h=100.44,P<0.001;tScr=36.76,P<0.001;tBUN=52.42,P<0.001),肾脏肾小球系膜增生,基底膜增厚,系膜基质相对面积增加(t=9.10,P<0.001;t=14.16,P<0.001),TIMP3蛋白异常低表达(t=8.51,P=0.001;t=12.66,P<0.001),纤维化蛋白Col IV(t=10.04,P<0.001;t=23.54,P<0.001)和FN(t=11.49,P<0.001;t=22.34,P<0.001)异常高表达;与T2DN组比较,miR-21-5p antagomir组小鼠Upro/24 h、Scr和BUN水平均降低(tUpro/24 h=20.31,P<0.001;tScr=7.90,P<0.001;tBUN=8.91,P<0.001),肾脏肾小球系膜增生和基底膜增厚缓解,系膜基质相对面积降低(t=7.96,P=0.001),TIMP3蛋白升高(t=11.71,P<0.001),纤维化蛋白Col IV和FN降低(tCol IV=6.58,P=0.003;tFN=6.27,P=0.003);miR-21-5p agomir组小鼠与miR-21-5p antagomir组小鼠生化指标和肾脏肾小球的病症相反;双荧光素酶结果显示,miR-21-5p能靶向调控TIMP3基因的表达。 结论 miR-21-5p通过靶向调控TIMP3抑制T2DN小鼠肾脏系膜细胞的增殖及细胞外基质的堆积。
中图分类号:
[1] 裘静英, 董志春, 王璟. 参芪降糖颗粒联合阿托伐他汀对2型糖尿病合并代谢综合征胰岛β细胞功能、胰岛素抵抗和血管内皮细胞功能的影响[J]. 中华中医药学刊, 2019, 37(7): 1725-1728. QIU Jingying, DONG Zhichun, WANG Jing. Effects of shenqi jiangtang granule combined with atorvastatin on islet β cell function, insulin resistance and vascular endothelial cell function in patients with type 2 diabetes combined with metabolic syndrome[J]. Chinese Archives of Traditional Chinese Medicine, 2019, 37(7): 1725-1728. [2] Kirkman MS, Mahmud H, Korytkowski MT. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes mellitus[J]. Endocrinol Metab Clin North Am, 2018, 47(1): 81-96. [3] Zang L, Shimada Y, Nakayama H, et al. Therapeutic silencing of centromere protein X ameliorates hyperglycemia in zebrafish and mouse models of type 2 diabetes mellitus[J]. Front Genet, 2019, 10: 693. doi: 10.3389/fgene. 2019.00693. [4] Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials[J]. BMJ, 2011, 343: d4169. doi: 10.1136/bmj. d4169. [5] 宋孟晓, 王燕, 刘进忠. miR-222-5p在人根尖乳头干细胞成骨/成牙本质向分化中的作用[J]. 山东大学学报(医学版), 2020, 58(3): 87-93. SONG Mengxiao, WANG Yan, LIU Jinzhong. MiR-222-5p promotes osteo/odontogenic differentiation of stem cells from human apical papilla[J]. Journal of Shandong University(Health Sciences), 2020, 58(3): 87-93. [6] Zhu H, Leung SW. Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies[J]. Diabetologia, 2015, 58(5): 900-911. [7] Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes[J]. Circ Res, 2010, 107(6): 810-817. [8] Ong J, Woldhuis RR, Boudewijn IM, et al. Age-related gene and miRNA expression changes in airways of healthy individuals[J]. Sci Rep, 2019, 9(1):1-8. [9] Feng Y, Ge Y, Wu M, et al. Long non-coding RNAs regulate inflammation in diabetic peripheral neuropathy by acting as ceRNAs targeting miR-146a-5p[J]. Diabetes Metab Syndr Obes, 2020, 13: 413-422. doi: 10.2147/DMSO.S242789. [10] 林海燕, 王红梅, 祝诚. 转化生长因子-β对基质金属蛋白酶及其组织抑制因子调控的研究进展[J]. 生物化学与生物物理进展, 2003, 30(1): 7-12. LIN Haiyan, WANG Hongmei, ZHU Cheng. Regulation of matrix metalloproteinases and their tissue inhibitors by transforming growth factor-β[J]. Prog Biochem Biophys, 2003, 30(1): 7-12. [11] GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet, 2015, 385(9963): 117-171. [12] Pourghasem M, Shafi H, Babazadeh Z. Histological changes of kidney in diabetic nephropathy[J]. Caspian J Intern Med, 2015, 6(3): 120-127. [13] 金海燕,张炎,马小莉,等. miR-122与miR-33a在2型糖尿病合并冠心病患者中的表达[J]. 山东大学学报(医学版), 2020, 58(3): 94-98. JIN Haiyan, ZHANG Yan, MA Xiaoli, et al. Expression of miR-122 and miR-33a in patients with type 2 diabetes complicated with coronary artery disease[J]. Journal of Shandong University(Health Sciences), 2020, 58(3): 94-98. [14] Lu S, Dong L, Jing X, et al. Abnormal lncRNA CCAT1/microRNA-155/SIRT1 axis promoted inflammatory response and apoptosis of tubular epithelial cells in LPS caused acute kidney injury[J]. Mitochondrion, 2020: S1567-7249(19)30066-2. doi: 10.1016/j.mito.2020.03.010. [15] Geng X, Song N, Zhao S, et al. LncRNA GAS5 promotes apoptosis as a competing endogenous RNA for miR-21 via thrombospondin 1 in ischemic AKI[J]. Cell Death Discov, 2020, 6: 19. doi: 10.1038/s41420-020-0253-8. [16] Hennino MF, Buob D, Van der Hauwaert C, et al. miR-21-5p renal expression is associated with fibrosis and renal survival in patients with IgA nephropathy[J]. Sci Rep, 2016, 6: 27209. doi: 10.1038/srep27209. [17] Faragalla H, Youssef YM, Scorilas A, et al. The clinical utility of miR-21 as a diagnostic and prognostic marker for renal cell carcinoma[J]. J Mol Diagn, 2012, 14(4): 385-392. [18] Srivastava SP, Goodwin JE, Kanasaki K, et al. Inhibition of angiotensin-converting enzyme ameliorates renal fibrosis by mitigating DPP-4 level and restoring antifibrotic microRNAs[J]. Genes(Basel), 2020, 11(2): E211. doi: 10.3390/genes11020211. [19] Li N, Wang Z, Gao F, et al. Melatonin ameliorates renal fibroblast-myofibroblast transdifferentiation and renal fibrosis through miR-21-5p regulation[J]. J Cell Mol Med, 2020. doi: 10.1111/jcmm.15221. [20] Dey N, Das F, Mariappan MM, et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes[J]. J Biol Chem, 2011, 286(29): 25586-25603. [21] Baker MA, Davis SJ, Liu P, et al. Tissue-specific microRNA expression patterns in four types of kidney disease[J]. J Am Soc Nephrol, 2017, 28(10): 2985-2992. [22] Wang JY, Gao YB, Zhang N, et al. miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy[J]. Mol Cell Endocrinol, 2014, 392(1-2): 163-172. [23] Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease[J]. Adv Pharmacol, 2018, 81:241-330. doi: 10.1016/bs.apha.2017.08.002. [24] Schrimpf C, Xin C, Campanholle G, et al. Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury[J]. J Am Soc Nephrol, 2012, 23(5): 868-883. [25] Kassiri Z, Defamie V, Hariri M, et al. Simultaneous transforming growth factor β-tumor necrosis factor activation and cross-talk cause aberrant remodeling response and myocardial fibrosis in Timp3-deficient heart[J]. J Biol Chem, 2009, 284(43): 29893-29904. [26] Fiorentino L, Cavalera M, Mavilio M, et al. Regulation of TIMP3 in diabetic nephropathy: a role for micro-RNAs[J]. Acta Diabetologica, 2013, 50(6): 965-969. |
[1] | 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 58(7): 1-6. |
|