您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (7): 38-46.doi: 10.6040/j.issn.1671-7554.0.2020.0557

• 临床医学 • 上一篇    

长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响

李宁1,2,李娟1,2,谢艳1,2,李培龙1,2,王允山1,2,杜鲁涛1,2,王传新1,2   

  1. 1.山东大学第二医院检验医学中心, 山东 济南 250033;2.山东省肿瘤标志物检测工程实验室, 山东 济南 250033
  • 发布日期:2020-07-10
  • 通讯作者: 王传新. E-mail:cxwang@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(81772271);山东省重大科技创新工程项目(2018YFJH0505);山东大学基本科研专项资金资助(2018JC002)

Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion

LI Ning1,2, LI Juan1,2, XIE Yan1,2, LI Peilong1,2, WANG Yunshan1,2, DU Lutao1,2, WANG Chuanxin1,2   

  1. 1. Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China;
    2. Tumor Marker Detection Engineering Laboratory of Shandong Province, Jinan 250033, Shandong, China
  • Published:2020-07-10

摘要: 目的 探讨长链非编码RNAs(LncRNAs)AL109955.1在结直肠癌(CRC)组织中的表达水平及其对CRC细胞增殖和迁移侵袭的影响。 方法 对癌症和肿瘤基因图谱(TCGA)中的CRC数据和基因型组织表达数据库(GTEx)中正常组织数据合并分析,筛选在CRC组织中低表达且与患者不良预后相关的LncRNAs,并通过实时荧光定量PCR(RT-qPCR)的方法在80例经病理学确诊的CRC组织及癌旁正常组织中验证其表达。采用细胞增殖检测试剂盒(CCK8)检测细胞增殖能力,以划痕实验和Transwell实验检测细胞迁移和侵袭能力。同时利用网页分析工具TargetScan和Tarbase,对下游miRNAs及其靶基因进行筛选和功能富集分析,使用cytoscape(3.7.2)软件构建LncRNA-miRNAs-mRNA的ceRNA调控网络。 结果 研究发现了一种新的LncRNA AL109955.1,其在CRC组织中的表达水平(1.18±2.46)较癌旁正常组织(1.81±1.65)明显降低(t=2.142,P=0.008)。进一步分析结果显示,AL109955.1的表达水平在不同分化程度的肿瘤组织中有差异[低分化:0.18(0.10~0.55)、中分化:0.49(0.22~1.81)、高分化:0.87(0.15~3.33)];此外,随着肿瘤瘤体的增加,AL109955.1的表达水平逐渐降低[≥5 cm:0.26(0.11~0.62)、<5 cm:0.49(0.181~1.99)],且差异具有统计学意义(U=570.5,P=0.020)。CCK8实验结果显示,AL109955.1能够显著抑制CRC细胞的增殖能力。划痕实验与Transwell实验结果则显示过表达AL109955.1后,细胞的迁移与侵袭能力明显下降。基因功能注释和基因通路富集分析显示AL109955.1可能通过影响Wnt、p53、Notch以及Jak-STAT等肿瘤经典信号通路从而发挥其生物学作用。 结论 LncRNA AL109955.1在CRC组织中的表达水平低于癌旁正常组织,并可抑制CRC细胞的增殖、迁移和侵袭。

关键词: 结直肠癌, 非编码RNA, 增殖, 迁移, 侵袭

Abstract: Objective To investigate the expression of long non-codingRNAs(LncRNAs)AL109955.1 in colorectal cancer(CRC)tissues and its effect on cell proliferation, migration and invasion. Methods The cancer genome atlas(TCGA)and genotype-tissue expression(GTEx)were analyzed to screen LncRNAs which were decreased in CRC tissues and related to the poor prognosis of patients, and then the expression in 80 pairs of CRC tissues and adjacent normal tissues was verified by quantitative real-time PCR(RT-qPCR). After that, the cell proliferation, migration and invasion were detected with cell counting kit-8(CCK8)test, wound healing test and Transwell assay, respectively. Finally, the miRNA binding sites and target mRNAs were screened with TargetScan and Tarbase, and a LncRNA-miRNAs-mRNA network was constructed with Cytoscape software(3.7.2). Results A novel LncRNA, AL109955.1, was screened and identified, and its expression was significantly lower in CRC tissues than that in adjacent normal tissues [(1.18±2.46)vs(1.8±1.65), t=2.14, P=0.008]. AL109955.1 expressed differently in CRC tissues with different degrees of differentiation [poorly differentiated: 0.18(0.10~0.55); moderately differentiated: 0.49(0.22~1.81); well differentiated: 0.87(0.15~3.33)]. In addition, AL109955.1 expression decreased with the increase of tumor size [≥5 cm: 0.26(0.11~0.62); <5 cm: 0.49(0.181~1.99), U=570.5, P=0.020)]. CCK8 test showed AL109955.1 could significantly inhibit the proliferation of CRC cells. Wound healing test and Transwell assay showed overexpression of AL109955.1 significantly decreased the migration and invasion of CRC cells. Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis indicated that AL109955.1 played its biological role by affecting classical tumor signaling pathways such as Wnt, p53, Notch and Jak-STAT. Conclusion LncRNA AL109955.1 expression is lower in CRC tissues than that in adjacent normal tissues. LncRNA AL109955.1 can inhibit the proliferation, migration and invasion abilities of CRC cells.

Key words: Colorectal cancer, Non-coding RNA, Proliferation, Migration, Invasion

中图分类号: 

  • R737.9
[1] Carr P R, Weigl K, Edelmann D, et al. Estimation of absolute risk of colorectal cancer based on healthy lifestyle, genetic risk, and colonoscopy status in a population-based study [J]. Gastroenterology, 2020, S0016-5085(20): 30337-30341.
[2] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[3] Sun N, Zhang L, Zhang C, et al. miR-144-3p inhibits cell proliferation of colorectal cancer cells by targeting BCL6 via inhibition of Wnt/beta-catenin signaling [J]. Cell Mol Biol Lett, 2020, 25: 19. doi: 10.1186/s11658-020-00210-3. eCollection 2020.
[4] Bonora M, Wieckowsk MR, Chinopoulos C, et al. Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition [J]. Oncogene, 2015, 34(12): 1608. doi: 10.1038/onc.2014.462.
[5] Kadam PD, Chuan HH. Erratum to: Rectocutaneous fistula with transmigration of the suture: a rare delayed complication of vault fixation with the sacrospinous ligament [J]. Int Urogynecol J, 2016, 27(3): 505. doi: 10.1007/s00192-016-2952-5.
[6] Mcdonel P, Guttman M. Approaches for understanding the mechanisms of long noncoding RNA regulation of gene expression [J]. Cold Spring Harb Perspect Biol, 2019, 11(12): a032151. doi: 10.1101/cshperspect.a032151.
[7] Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in cancer [J]. Oncogene, 2017, 36(41): 5661-5667.
[8] Hua JT, Ahmed M, Guo H, et al. Risk SNP-mediated promoter-enhancer switching drives prostate cancer through lncRNA PCAT19 [J]. Cell, 2018, 174(3): 564-575.
[9] Wang Y, Lu JH, Wu QN, et al. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer [J]. Mol Cancer, 2019, 18(1): 174. doi: 10.1186/s12943-019-1105-0.
[10] Fillon M. Study aims to improve colorectal cancer screening rates [J]. CA Cancer J Clin, 2019, 69(3): 161-163.
[11] Wong MC, Huang J, Lok V, et al. Differences in incidence and mortality trends of colorectal cancer, worldwide, based on sex, age, and anatomic location [J]. Clin Gastroenterol Hepatol, 2020, S1542-3565(20): 30196-30198.
[12] Pawa N, Arulampalam T, Norton JD. Screening for colorectal cancer: established and emerging modalities [J]. Nat Rev Gastroenterol Hepatol, 2011, 8(12): 711-722.
[13] 王唯全, 李萍, 王楚盈, 等. 结直肠癌的病因病机与药物治疗的研究进展[J]. 长春中医药大学学报, 2020, 36(1): 194-197. WANG Weiquan, LI Ping, WANG Chuying, et al. Advances in etiology, pathogenesis and drug therapy of colorectal cancer [J]. Journal of Changchun University of Chinese Medicine, 2020, 36(1): 194-197.
[14] Weng W, Goel A. Curcumin and colorectal cancer: An update and current perspective on this natural medicine [J]. Semin Cancer Biol, 2020, S1044-579X(20): 30044.
[15] Madunic K, Zhang T, Mayboroda OA, et al. Colorectal cancer cell lines show striking diversity of their O-glycome reflecting the cellular differentiation phenotype [J]. Cell Mol Life Sci, 2020. doi: 10.1007/s00018-020-03504-z. Online ahead of print.
[16] Fearon ER. Molecular genetics of colorectal cancer [J]. Annu Rev Pathol, 2011, 6: 479-507. doi: 10.1146/annurev-pathol-011110-130235.
[17] Cheng J, Meng J, Zhu L, et al. Exosomal noncoding RNAs in Glioma: biological functions and potential clinical applications [J]. Mol Cancer, 2020, 19(1): 66. doi: 10.1186/s12943-020-01189-3.
[18] Wang Y, Sun B, Wen X, et al. The roles of lncRNA in cutaneous squamous cell carcinoma [J]. Front Oncol, 2020, 2(10): 158. doi: 10.3389/fonc.2020.00158. eCollection 2020.
[19] Wu D, He X, Wang W, et al. Long noncoding RNA SNHG12 induces proliferation, migration, epithelial-mesenchymal transition and stemness of esophageal squamous cell carcinoma cells via post-transcriptional regulation of BMI1 and CTNNB1 [J]. Mol Oncol, 2020. doi: 10.1002/1878-0261.12683. Online ahead of print.
[20] Schier AC, Taatjes DJ. Structure and mechanism of the RNA polymerase II transcription machinery [J]. Genes Dev, 2020, 34(7-8): 465-488.
[21] Liu SJ, Malatesta M, Lien BV, et al. CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma [J]. Genome Biol, 2020, 21(1): 83. doi: 10.1186/s13059-020-01995-4.
[22] Huang JZ, Chen M, Chen D, et al. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth [J]. Mol Cell, 2017, 68(1): 171-184.
[23] Zhao Y, Chu Y, Sun J, et al. LncRNA GAS8-AS inhibits colorectal cancer(CRC)cell proliferation by downregulating lncRNA AFAP1-AS1 [J]. Gene, 2019, 7(10): 140-144.
[24] Huo W, Qi F, Wang K. Long non-coding RNA FER1L4 inhibits prostate cancer progression via sponging miR-92a-3p and upregulation of FBXW7 [J]. Cancer Cell Int, 2020, 2(20): 64. doi: 10.1186/s12935-020-1143-0. eCollection 2020.
[25] Liu P, Wang H, Liang Y, et al. LINC00852 promotes lung adenocarcinoma spinal metastasis by targeting s100A9 [J]. J Cancer, 2018, 9(22): 4139-4149.
[26] Hong S, Yan Z, Song Y, et al. LncRNA AGAP2-AS1 augments cell viability and mobility, and confers gemcitabine resistance by inhibiting miR-497 in colorectal cancer [J]. Aging, 2020, 12(6): 5183-5194.
[1] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 58(7): 7-14.
[2] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 58(7): 24-31.
[3] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 58(7): 32-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!