山东大学学报 (医学版) ›› 2020, Vol. 1 ›› Issue (7): 38-46.doi: 10.6040/j.issn.1671-7554.0.2020.0557
李宁1,2,李娟1,2,谢艳1,2,李培龙1,2,王允山1,2,杜鲁涛1,2,王传新1,2
LI Ning1,2, LI Juan1,2, XIE Yan1,2, LI Peilong1,2, WANG Yunshan1,2, DU Lutao1,2, WANG Chuanxin1,2
摘要: 目的 探讨长链非编码RNAs(LncRNAs)AL109955.1在结直肠癌(CRC)组织中的表达水平及其对CRC细胞增殖和迁移侵袭的影响。 方法 对癌症和肿瘤基因图谱(TCGA)中的CRC数据和基因型组织表达数据库(GTEx)中正常组织数据合并分析,筛选在CRC组织中低表达且与患者不良预后相关的LncRNAs,并通过实时荧光定量PCR(RT-qPCR)的方法在80例经病理学确诊的CRC组织及癌旁正常组织中验证其表达。采用细胞增殖检测试剂盒(CCK8)检测细胞增殖能力,以划痕实验和Transwell实验检测细胞迁移和侵袭能力。同时利用网页分析工具TargetScan和Tarbase,对下游miRNAs及其靶基因进行筛选和功能富集分析,使用cytoscape(3.7.2)软件构建LncRNA-miRNAs-mRNA的ceRNA调控网络。 结果 研究发现了一种新的LncRNA AL109955.1,其在CRC组织中的表达水平(1.18±2.46)较癌旁正常组织(1.81±1.65)明显降低(t=2.142,P=0.008)。进一步分析结果显示,AL109955.1的表达水平在不同分化程度的肿瘤组织中有差异[低分化:0.18(0.10~0.55)、中分化:0.49(0.22~1.81)、高分化:0.87(0.15~3.33)];此外,随着肿瘤瘤体的增加,AL109955.1的表达水平逐渐降低[≥5 cm:0.26(0.11~0.62)、<5 cm:0.49(0.181~1.99)],且差异具有统计学意义(U=570.5,P=0.020)。CCK8实验结果显示,AL109955.1能够显著抑制CRC细胞的增殖能力。划痕实验与Transwell实验结果则显示过表达AL109955.1后,细胞的迁移与侵袭能力明显下降。基因功能注释和基因通路富集分析显示AL109955.1可能通过影响Wnt、p53、Notch以及Jak-STAT等肿瘤经典信号通路从而发挥其生物学作用。 结论 LncRNA AL109955.1在CRC组织中的表达水平低于癌旁正常组织,并可抑制CRC细胞的增殖、迁移和侵袭。
中图分类号:
[1] | Carr P R, Weigl K, Edelmann D, et al. Estimation of absolute risk of colorectal cancer based on healthy lifestyle, genetic risk, and colonoscopy status in a population-based study [J]. Gastroenterology, 2020, S0016-5085(20): 30337-30341. |
[2] | Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): 394-424. |
[3] | Sun N, Zhang L, Zhang C, et al. miR-144-3p inhibits cell proliferation of colorectal cancer cells by targeting BCL6 via inhibition of Wnt/beta-catenin signaling [J]. Cell Mol Biol Lett, 2020, 25: 19. doi: 10.1186/s11658-020-00210-3. eCollection 2020. |
[4] | Bonora M, Wieckowsk MR, Chinopoulos C, et al. Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition [J]. Oncogene, 2015, 34(12): 1608. doi: 10.1038/onc.2014.462. |
[5] | Kadam PD, Chuan HH. Erratum to: Rectocutaneous fistula with transmigration of the suture: a rare delayed complication of vault fixation with the sacrospinous ligament [J]. Int Urogynecol J, 2016, 27(3): 505. doi: 10.1007/s00192-016-2952-5. |
[6] | Mcdonel P, Guttman M. Approaches for understanding the mechanisms of long noncoding RNA regulation of gene expression [J]. Cold Spring Harb Perspect Biol, 2019, 11(12): a032151. doi: 10.1101/cshperspect.a032151. |
[7] | Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in cancer [J]. Oncogene, 2017, 36(41): 5661-5667. |
[8] | Hua JT, Ahmed M, Guo H, et al. Risk SNP-mediated promoter-enhancer switching drives prostate cancer through lncRNA PCAT19 [J]. Cell, 2018, 174(3): 564-575. |
[9] | Wang Y, Lu JH, Wu QN, et al. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer [J]. Mol Cancer, 2019, 18(1): 174. doi: 10.1186/s12943-019-1105-0. |
[10] | Fillon M. Study aims to improve colorectal cancer screening rates [J]. CA Cancer J Clin, 2019, 69(3): 161-163. |
[11] | Wong MC, Huang J, Lok V, et al. Differences in incidence and mortality trends of colorectal cancer, worldwide, based on sex, age, and anatomic location [J]. Clin Gastroenterol Hepatol, 2020, S1542-3565(20): 30196-30198. |
[12] | Pawa N, Arulampalam T, Norton JD. Screening for colorectal cancer: established and emerging modalities [J]. Nat Rev Gastroenterol Hepatol, 2011, 8(12): 711-722. |
[13] | 王唯全, 李萍, 王楚盈, 等. 结直肠癌的病因病机与药物治疗的研究进展[J]. 长春中医药大学学报, 2020, 36(1): 194-197. WANG Weiquan, LI Ping, WANG Chuying, et al. Advances in etiology, pathogenesis and drug therapy of colorectal cancer [J]. Journal of Changchun University of Chinese Medicine, 2020, 36(1): 194-197. |
[14] | Weng W, Goel A. Curcumin and colorectal cancer: An update and current perspective on this natural medicine [J]. Semin Cancer Biol, 2020, S1044-579X(20): 30044. |
[15] | Madunic K, Zhang T, Mayboroda OA, et al. Colorectal cancer cell lines show striking diversity of their O-glycome reflecting the cellular differentiation phenotype [J]. Cell Mol Life Sci, 2020. doi: 10.1007/s00018-020-03504-z. Online ahead of print. |
[16] | Fearon ER. Molecular genetics of colorectal cancer [J]. Annu Rev Pathol, 2011, 6: 479-507. doi: 10.1146/annurev-pathol-011110-130235. |
[17] | Cheng J, Meng J, Zhu L, et al. Exosomal noncoding RNAs in Glioma: biological functions and potential clinical applications [J]. Mol Cancer, 2020, 19(1): 66. doi: 10.1186/s12943-020-01189-3. |
[18] | Wang Y, Sun B, Wen X, et al. The roles of lncRNA in cutaneous squamous cell carcinoma [J]. Front Oncol, 2020, 2(10): 158. doi: 10.3389/fonc.2020.00158. eCollection 2020. |
[19] | Wu D, He X, Wang W, et al. Long noncoding RNA SNHG12 induces proliferation, migration, epithelial-mesenchymal transition and stemness of esophageal squamous cell carcinoma cells via post-transcriptional regulation of BMI1 and CTNNB1 [J]. Mol Oncol, 2020. doi: 10.1002/1878-0261.12683. Online ahead of print. |
[20] | Schier AC, Taatjes DJ. Structure and mechanism of the RNA polymerase II transcription machinery [J]. Genes Dev, 2020, 34(7-8): 465-488. |
[21] | Liu SJ, Malatesta M, Lien BV, et al. CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma [J]. Genome Biol, 2020, 21(1): 83. doi: 10.1186/s13059-020-01995-4. |
[22] | Huang JZ, Chen M, Chen D, et al. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth [J]. Mol Cell, 2017, 68(1): 171-184. |
[23] | Zhao Y, Chu Y, Sun J, et al. LncRNA GAS8-AS inhibits colorectal cancer(CRC)cell proliferation by downregulating lncRNA AFAP1-AS1 [J]. Gene, 2019, 7(10): 140-144. |
[24] | Huo W, Qi F, Wang K. Long non-coding RNA FER1L4 inhibits prostate cancer progression via sponging miR-92a-3p and upregulation of FBXW7 [J]. Cancer Cell Int, 2020, 2(20): 64. doi: 10.1186/s12935-020-1143-0. eCollection 2020. |
[25] | Liu P, Wang H, Liang Y, et al. LINC00852 promotes lung adenocarcinoma spinal metastasis by targeting s100A9 [J]. J Cancer, 2018, 9(22): 4139-4149. |
[26] | Hong S, Yan Z, Song Y, et al. LncRNA AGAP2-AS1 augments cell viability and mobility, and confers gemcitabine resistance by inhibiting miR-497 in colorectal cancer [J]. Aging, 2020, 12(6): 5183-5194. |
[1] | 王晓磊 张海涛 张辉 郭成浩. 舒血宁注射液对高碘致培养血管内皮细胞损伤的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 38-. |
[2] | 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58. |
[3] | 张振伟,李佳,陈克明. IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移[J]. 山东大学学报 (医学版), 2022, 60(9): 74-84. |
[4] | 孙丽娜,杜晓晓,张红娟,孟金来. 人类白细胞抗原G调控蜕膜自然杀伤细胞促进滋养细胞侵袭[J]. 山东大学学报 (医学版), 2022, 60(6): 41-45. |
[5] | 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80. |
[6] | 陈兆波,方敏,薛浩然,刘春艳. 去泛素化酶USP35促进非小细胞肺癌细胞迁移和侵袭[J]. 山东大学学报 (医学版), 2022, 60(4): 30-37. |
[7] | 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82. |
[8] | 宋甜,付琳琳,王秋敏,杨晓,王莹,边月红,石玉华. 脂肪酸转运蛋白1在多囊卵巢综合征患者颗粒细胞中的表达[J]. 山东大学学报 (医学版), 2022, 60(2): 22-26. |
[9] | 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120. |
[10] | 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12. |
[11] | 王芳,陈华,商丽红,李茹月,李咏梅,杨玉娥,哈春芳. U0126对子宫内膜异位症大鼠MEK/ERK/NF-κB通路及增殖侵袭的影响[J]. 山东大学学报 (医学版), 2021, 59(9): 148-154. |
[12] | 李皖皖,周文凯,董书晴,贺士卿,刘钊,张家新,刘斌. 利用数据库信息构建乳腺癌免疫关联lncRNAs风险评估模型[J]. 山东大学学报 (医学版), 2021, 59(7): 74-84. |
[13] | 孙富云,王维鹏,张会会,耿艳,安小霞,李双双,张彬彬. 结直肠癌术后患者人格特质与抑郁、焦虑症状的关联性[J]. 山东大学学报 (医学版), 2021, 59(7): 91-96. |
[14] | 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89. |
[15] | 孔雪,李娟,段伟丽,史爽,李培龙,杜鲁涛,毛海婷,王传新. 长链非编码RNA AC012073.1对乳腺癌细胞迁移侵袭的影响及临床价值[J]. 山东大学学报 (医学版), 2021, 59(4): 70-78. |
|