山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (7): 32-37.doi: 10.6040/j.issn.1671-7554.0.2020.0096
• • 上一篇
马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉
MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui
摘要: 目的 寻找并验证miR-27b-3p和SMAD1的关系,探讨miR-27b-3p对骨肉瘤细胞增殖、侵袭、迁移作用的影响,为骨肉瘤靶向治疗提供理论依据。 方法 采用生物信息学方法预测候选靶基因;应用双荧光素酶报告实验确定miR-27b-3p和SMAD1靶向关系;采用qRT-PCR法选择SAOS-2骨肉瘤细胞系。采用miR-27b-3p转染SAOS-2细胞后,分为miR-27b-3p inhibitor组、空白对照组和阴性对照组。采用MTT、Transwell迁移和侵袭实验检测miR-27b-3p对SAOS-2细胞的影响;采用Western blotting法检测沉默miR-27b-3p后SMAD1的表达量。 结果 生物信息学检测显示,miR-27b-3p与SMAD1-UTR存在结合位点;双荧光素酶报告实验显示,miR-27b-3p inhibitor组SMAD1的表达量高于阴性对照组,差异有统计学意义(P<0.05),SMAD1是miR-27b-3p的靶基因。SAOS-2细胞MTT、Transwell迁移实验和侵袭实验结果均显示,miR-27b-3p inhibitor组与空白对照组和阴性对照组细胞数相比降低,差异有统计学意义(P<0.05),miR-27b-3p inhibitor组细胞的增殖、迁移和侵袭能力降低。miR-27b-3p inhibitor组与阴性对照组SMAD1蛋白表达量相比明显降低(P<0.05)。 结论 miR-27b-3p可以通过调控SMAD1的表达促进骨肉瘤细胞增殖、迁移和侵袭作用。miR-27b-3p可能在骨肉瘤细胞中起着促癌基因作用。
中图分类号:
[1] Ferrari S, Mercuri M, Bacci G. Comment on “Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols”[J]. J Clin Oncol, 2004, 17(3):131-137. [2] Marina NM, Smeland S, Bielack SS, et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma(EURAMOS-1): an open-label, international, randomised controlled trial[J]. Lancet Oncol, 2016, 17(10):1396-1408. [3] Luetke A, Meyers PA, Lewis I, et al. Osteosarcoma treatment-Where do we stand? A state of the art review[J]. Cancer Treat Rev, 2014, 40(4):523-532. [4] Jones KB, Salah Z, Mare SD, et al. miRNA signatures associate with pathogenesis and progression of osteosarcoma[J]. Cancer Res, 2012, 72(7):1865-1877. [5] Milowsky MI, Rumble RB, Booth CM, et al. Guideline on muscle-invasive and metastatic bladder cancer(European Association of Urology Guideline): American society of clinical oncology clinical practice guideline endorsement[J]. J Clin Oncol, 2016, 34(16):1945-1952. [6] 李胜,王威,李建军,等.骨肉瘤靶向治疗研究进展[J].山东医药,2019,59(22):99-102. [7] Fadaka AO, Klein A, Pretorius A. In silico identification of microRNAs as candidate colorectal cancer biomarkers[J]. Tumour Biol, 2019, 41(11):1-15. [8] Li J, Zhou YY, Zhao L, et al. Effect of miR-145 on migration and invasion of ovarian cancer cells[J]. Acta Academiae Medicinae Sinicae, 2019, 41(5):581-588. [9] Shi Y, Gong W, Lu L, et al. Upregulation of miR-129-5p increases the sensitivity to Taxol through inhibiting HMGB1-mediated cell autophagy in breast cancer MCF-7 cells[J]. Braz J Med Biol Res, 2019, 52(11):8657. [10] Zou J, Liao X, Zhang J, et al. Dysregulation of miR-195-5p/-218-5p/BIRC5 axis predicts a poor prognosis in patients with gastric cancer[J]. J Biol Regul Homeost Agents, 2019, 33(5):1377-1385. [11] Gao YN, Ma YP. Expression analysis and epigenetics of microrna-28-5p in multiple myeloma[J].Experimental hematology, 2019, 27(5):1540-1547. [12] Fang C, Zhu DX, Dong HJ, et al. Serum microRNAs are promising novel biomarkers for diffuse large B cell lymphoma[J]. Ann Hematol, 2012, 91(4):553-559. [13] Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Res, 2008, 18(10):997-1006. [14] Cong C, Wang W, Tian J, et al. Identification of serum miR-124 as a biomarker for diagnosis and prognosis in osteosarcoma[J]. Cancer Biomark, 2018, 21(2):449. [15] Jones KB, Salah Z, Del Mare S, et al. miRNA signatures associate with pathogenesis and progression of osteosarcoma[J]. Cancer Res, 2012, 72(7):1865-1877. [16] 阮水良, 韩晨阳, 官俏兵, 等. IL-9通过TGF-β/Smad通路诱导胃癌MKN-45细胞上皮-间充质转化[J]. 中国病理生理杂志, 2018, 34(10):28-33. RUAN Shuiliang, HAN Chenyang, GUAN Qiaobing, et al. IL-9 induces epithelial-mesenchymal transition of gastric cancer MKN-45 cells by TGF-β/Smad signaling pathway[J]. Chinese Journal of Pathophysiology, 2018,34(10): 28-53. [17] 刘婷. N-糖基化抑制通过调控TGFβ/Smad通路对鼻咽癌细胞株恶性生物学行为的影响及其机制研究[D].广州:南方医科大学,2017. [18] Xu TY, Chang YS, Jin J, et al. Bone morphogeneticprotein-4-induced epithelial-mesenchymal transition and invasiveness through Smad1-mediated signal pathway in squamous cell carcinoma of the head and neck[J]. Arch Med Res, 2011, 42(2):128-137. [19] Yang Y, Han L, He Z, et al. Advances in limb salvage treatment of osteosarcoma[J]. J Bone Oncol, 2018, 10(1):36-40. [20] Chen S, Wang Q, Zhou XM, et al. MicroRNA-27b reverses docetaxel resistance of non-small cell lung carcinoma cells via targeting epithelial growth factor receptor[J]. Mol Med Rep, 2016, 14(1):949. [21] Liu Y, Cai QY, Bao PP, et al. Tumor tissue microRNA expression in association with triple-negative breast cancer outcomes[J].Breast cancer Res, 2015, 152(1):183-191. [22] Fukumoto I, Koshizuka K, Hanazawa T, et al. The tumor-suppressive microRNA-23b/27b cluster regulates the MET oncogene in oral squamous cell carcinoma[J]. Int J Oncol, 2016, 49(3):1119. [23] Kontomanolis E, Mitrakas A, Giatromanolaki A, et al. A pilot study on plasma levels of micro-RNAs involved in angiogenesis and vascular maturation in patients with breast cancer[J]. Med Oncol, 2017, 34(2):20. [24] Zhang J, Yan YG, Wang C, et al. MicroRNAs in osteosarcoma[J]. Clin Chim Acta, 2015, 444(3):9-17. [25] 张其川, 王素芳, 王云峰, 等. miRNA-27b在骨肉瘤中的表达及其临床意义[J].临床与病理杂志, 2017, 37(12):2633-2638. ZHANG Qichuan, WANG Sufang, WANG Yunfeng, et al. Expression and clinical significance of circulating microRNA-27b in patients with osteosarcoma[J]. Journal of Clinical and Pathology Research, 2017, 37(12):2633-2638. [26] 姚霁航. miR-27b靶向调控CDH11促进宫颈癌细胞增殖、侵袭和EMT的相关研究[D].沈阳:中国医科大学,2017. [27] Hongxin M, Lei Z, Jingna R, et al. Myricetin inhibits migration and invasion of hepatocellular carcinoma MHCC97H cell line by inhibiting the EMT process[J]. Oncol Lett, 2019, 18(6):6614-6620. [28] Fernanda L, José TM, Castellón Enrique A, et al. Secreted protein acidic and rich in cysteine(SPARC)induces epithelial-mesenchymal transition, enhancing migration and invasion, and is associated with high Gleason score in prostate cancer[J]. Asian J Androl, 2019, 21(6):557-564. [29] 陈记军. 骨肉瘤患者血清中特异性microRNA表达谱的筛选及其临床意义的研究[D]. 南京:南京大学, 2013. [30] Pacifici M. The pathogenic roles of heparan sulfate deficiency in hereditary multiple exostoses[J]. Matrix Biol, 2018, 10(1):71-72. [31] Ramachandran A, Vizán P, Das D, et al. TGF-β uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition[J]. Elife, 2018, 7:31756. doi: 10.7554/eLife.31756. [32] Massague J. How cells read TGF-beta signals[J]. Nat Rev Mol Cell Biol, 2000, 1(3):169-178. [33] Long Y, Zhu Y. Identification of FBXW7α-regulated genes in M1-polarized macrophages in colorectal cancer by RNA sequencing[J]. Saudi Med J, 2019, 40(8):766-773. [34] Zhao X, Sun Q, Dou C, et al. BMP4 inhibits glioblastoma invasion by promoting E-cadherin and claudin expression[J]. Front Biosci(Landmark Ed), 2019, 24(1):1060-1070. [35] Nokin MJ, Bellier J, Durieux F, et al. Methylglyoxal, a glycolysis metabolite, triggers metastasis through MEK/ERK/SMAD1 pathway activation in breast cancer[J]. Breast Cancer Res, 2019, 21(1):11. |
[1] | 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 58(7): 7-14. |
|