您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (9): 53-58.doi: 10.6040/j.issn.1671-7554.0.2021.1471

• 基础医学 • 上一篇    下一篇



  1. 青岛市妇女儿童医院 1.妇科中心;2.普通外科, 山东 青岛 266034
  • 发布日期:2022-09-02
  • 通讯作者: 赵淑萍. E-mail:Zhaosp66@126.com
  • 基金资助:

Effects of tanshinone IIA on the proliferation and apoptosis of endometrial carcinoma cells

ZHAO Ge1, ZOU Cunhua1, SONG Dongdong2, ZHAO Shuping1   

  1. 1. Gynecological Center;
    2. General Surgery Qingdao Women and Children Hospital, Qingdao 266034, Shandong, China
  • Published:2022-09-02

摘要: 目的 探讨丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响。 方法 将丹参酮IIA作用后的子宫内膜癌细胞设置为对照组、低浓度组(1 μg/mL)、中浓度组(2.5 μg/mL)及高浓度组(5 μg/mL);同时将酪蛋白激酶2(CK2)特异性磷酸化抑制剂(TBB)和丹参酮IIA共同处理后的细胞设置为对照组、TBB组(60 μmol)、药物组(5 μg/mL)及药物(5 μg/mL)+TBB组(60 μmol)。结晶紫染色法检测丹参酮IIA对子宫内膜癌细胞增殖的影响;Western blotting检测各组子宫内膜癌细胞中P53、活化胱天蛋白酶-3(Cleaved caspase-3)、B淋巴细胞瘤-2基因(Bcl-2)、CK2α、乳腺癌缺失因子1(DBC1)、沉默信息调节因子1(SIRT1)、磷酸化乳腺癌缺失因子1(p-DBC1)的表达;同时加入TBB,检测子宫内膜癌细胞中CK2α、DBC1、p-DBC1的表达。 结果 结晶紫染色结果显示,对照组和高浓度组各时间点(24、48、72 h)细胞增殖率分别为(0.87±0.05)%、(0.61±0.04)%、(0.30±0.04)%、(0.09±0.04)%,差异有统计学意义(F=217.976,P<0.001)。Western blotting结果显示,在丹参酮IIA作用下,P53(F=244.261)及Cleaved caspase-3(F=290.842)的表达水平呈浓度依赖性升高,Bcl-2(F=198.170)的表达水平呈浓度依赖性降低,差异均有统计学意义(P均<0.001);p-DBC1/DBC1的表达水平呈浓度依赖性降低,差异有统计学意义(F=187.092, P<0.001),而CK2α、SIRT1的表达差异均无统计学意义(P均>0.05);单独应用TBB(F=7.847)、丹参酮IIA(F=827.715)及联合应用(F=22.174),p-DBC1/DBC1表达均受到抑制,与对照组比较,差异均有统计学意义(P=0.023,P<0.001,P=0.002);CK2α表达差异无统计学意义(P>0.05)。 结论 丹参酮IIA可以明显抑制子宫内膜癌细胞增殖并诱导凋亡,其机制可能与CK2/DBC1/SIRT1/P53信号通路有关。

关键词: 丹参酮IIA, 子宫内膜癌, 细胞凋亡, 细胞增殖, 磷酸化

Abstract: Objective To investigate the effects of tanshinone IIA on the proliferation and apoptosis of endometrial carcinoma cells. Methods According to the experimental requirements, endometrial carcinoma cells treated with tanshinone IIA were divided into the control group, low concentration group(1 μg/mL), medium concentration group(2.5 μg/mL)and high concentration group(5 μg/mL). Meanwhile, cells co-treated with CK2 specific phosphorylation inhibitor(TBB)and tanshinone IIA were divided into the control group, TBB group(60 μmol), drug group(5 μg/mL)and drug(5 μg/mL)+ TBB group(60 μmol). The effects of tanshinone IIA on the proliferation of cells were detected with crystal violet staining; expressions of P53, Cleaved caspase-3, B-cell lymphoma-2(Bcl-2), casein kinase 2α(CK2α), deletion in breast cancer 1(DBC1), silent information regulator 1(SIRT1)and p-deletion in breast cancer 1(p-DBC1)were detected with Western blotting. After TBB was added, expressions of CK2α, DBC1 and p-DBC1 were also detected. Results The results of crystal violet staining showed that the proliferation rates of the control group and high concentration group at each time point(24 h, 48 h, 72 h)were(0.87±0.05)%,(0.61±0.04)%,(0.30±0.04)% and(0.09±0.04)%, respectively(F=217.976, P<0.001). The results of Western blotting showed that under the action of tanshinone IIA, the expressions of P53(F=244.261)and Cleaved caspase-3(F=290.842)increased in a concentration-dependent manner, while the expression of Bcl-2(F=198.170)decreased in a concentration-dependent manner(P<0.001), and the expression of p-DBC1/DBC1 decreased in a concentration-dependent manner(F=187.092, P<0.001), but there was no significant difference in CK2α and SIRT1 expressions(P>0.05). The expression of p-DBC1/DBC1 was inhibited by TBB(F=7.847), tanshinone IIA(F=827.715)and their combination(F=22.174), and the difference was statistically significant compared with the control group(P=0.023,P<0.001, P=0.002), but there was no significant difference in CK2α expression(P>0.05). Conclusion Tanshinone IIA can significantly inhibit the proliferation and induce apoptosis of endometrial carcinoma cells, and the mechanism may be related to the CK2/DBC1/SIRT1/P53 signaling pathway.

Key words: Tanshinone IIA, Endometrial carcinoma, Apoptosis, Cell proliferation, Phosphorylation


  • R737.33
[1] Urick ME, Bell DW. Clinical actionability of molecular targets in endometrial cancer[J]. Nat Rev Cancer, 2019, 19(9): 510-521.
[2] 魏静, 张为远. 早期子宫内膜癌患者药物治疗中存在的问题[J]. 中国妇产科临床杂志, 2019, 20(1): 87-89. WEI Jing, ZHANG Weiyuan. Problems in drug treatment of patients with early endometrial cancer[J]. Chinese Journal of Obstetrics and Gynecology, 2019, 20(1): 87-89.
[3] Wortman BG, Nout RA, Bosse T, et al. Selecting adjuvant treatment for endometrial carcinoma using molecular risk factors[J]. Curr Oncol Rep, 2019, 21(9): 83. doi: 10.1007/s11912-019-0825-z.
[4] Zhou M, Zhou G, Hu SH, et al. Tanshinone IIA suppress the proliferation of HNE-1 nasopharyngeal carcinoma an in vitro study[J]. Saudi J Biol Sci, 2018, 25(2): 267-272.
[5] International BMR. Retracted: tanshinone IIA induces apoptosis in human oral cancer KB cells through a mitochondria-dependent pathway[J]. Biomed Res Int, 2017: 9496485. doi: 101155/2017/9496485.
[6] Jeon YJ, Kim JS, Hwang GH, et al. Inhibition of cytochrome P4502J2 by tanshinone IIA induces apoptotic cell death in hepatocellular carcinoma HepG2 cells[J]. Eur J Pharmacol, 2015, 764: 480-488. doi: 10.1016/j.ejphar.2015.07.047.
[7] Lin JY, Ke YM, Lai JS, et al. Tanshinone IIA enhances the effects of TRAIL by downregulating survivin in human ovarian carcinoma cells[J]. Phytomedicine, 2015, 22(10): 929-938.
[8] Lin H, Zheng L, Li S, et al. Cytotoxicity of tanshinone IIA combined with taxol on drug-resist breast cancer cells MCF-7 through inhibition of tau[J]. Phytother Res, 2018, 32(4): 1-5.
[9] Dong W, Zhang Y, Chen X, et al. High-dose tanshinone IIA suppresses migration and proliferation while promoting apoptosis of astrocytoma cells via notch-1 pathway[J]. Neurochem Res, 2018, 43(9): 1855-1861.
[10] Su CC. Tanshinone IIA inhibits gastric carcinoma AGS cells by decreasing the protein expression of VEGFR and blocking Ras/Raf/MEK/ERK pathway[J]. Int J Mol Med, 2018, 41(4): 2389-2396.
[11] 鲁强, 管东方, 吴艳丽, 等. 靶向调控SIRT1基因表达对子宫内膜癌细胞生物学行为的影响及其机制研究[J]. 中国妇产科临床杂志, 2021, 22(3): 261-263. LU Qiang, GUAN Dongfang, WU Yanli, et al. Effect of targeting SIRT1 gene expression on biological behavior of endometrial cancer cells and its mechanism[J]. Chinese Journal of Obstetrics and Gynecology, 2021, 22(3): 261-263.
[12] Genestie C, Leary A, Devouassoux M, et al. Histological and molecular classification of endometrial carcinoma and therapeutical implications[J]. Bull Cancer, 2017, 104(12): 1001-1012.
[13] Psilopatis I, Pergaris A, Giaginis C, et al. Histone deacetylase inhibitors: a promising therapeutic alternative for endometrial carcinoma[J]. Dis Markers, 2021: 7850688. doi: 10.1155/2021/7850688.
[14] Huvila J, Pors J, Thompson EF, et al. Endometrial carcinoma: molecular subtypes, precursors and the role of pathology in early diagnosis[J]. J Pathol, 2021, 253(4): 355-365.
[15] Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: Treating cancer with specificity[J]. Eur J Pharmacol, 2018, 834: 188-196. doi: 10.1016/j.ejphar.2018.07.034.
[16] Wang Z, Meng F, Zhong Z. Emerging targeted drug delivery strategies toward ovarian cancer[J]. Adv Drug Deliv Rev, 2021, 178: 113969. doi: 10.1016/j.addr.2021.113969.
[17] Fang ZY, Zhang M, Liu JN, et al. Tanshinone IIA: a review of its anticancer effects[J]. Front Pharmacol, 2021, 11: 611087. doi: 10.3389/fphar.2020.611087.
[18] Jalal T, Natto HA, Wahab RA. Cytotoxicity and toxicological studies of artocarpus altilis extracts, inducing apoptosis and cell cycle arrest via caspase-3 and caspase-8 pathways against human breast MCF-7 cells[J]. Comb Chem High Throughput Screen, 2022, 25(6): 973-985.
[19] Ghaffari K, Ahmadi R, Saberi B, et al. Anti-proliferative effects of Ziziphus spina-christi and Phlomis russeliana leaf extracts on HEK293 and MCF-7 Cell Lines and Evaluation of Bax and Bcl-2 Genes Expression Level in MCF-7 Cells[J]. Asian Pac J Cancer Prev, 2021, 22(S1): 81-87.
[20] Li W, Li F, Zhang X, et al. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment[J]. Signal Transduct Target Ther, 2021, 6(1): 422. doi: 10.1038/s41392-021-00825-8.
[21] Fang Q, Bellanti JA, Zheng SG. Advances on the role of the deleted in breast cancer(DBC1)in cancer and autoimmune diseases[J]. J Leukocyte Biol, 2021, 109(2): 449-454.
[22] Brandl L, Zhang Y, Kirstein N, et al. Targeting c-MYC through interference with NAMPT and SIRT1 and their association to oncogenic drivers in murine serrated intestinal tumorigenesis[J]. Neoplasia, 2019, 21(10): 974-988.
[23] Yin CF, Kao SC, Hsu CL, et al. Phosphoproteome analysis reveals dynamic heat shock protein 27 phosphorylation in tanshinone IIA-induced cell death[J]. J Proteome Res, 2020, 19(4): 1620-1634.
[24] Tang S, Yuan Y, Liu Z, et al. Casein kinase 2 inhibitor CX-4945 elicits an anti-Warburg effects through the downregulation of TAp73 and inhibits gastric tumorigenesis[J]. Biochem Biophys Res Commun, 2020, 530(4): 686-691.
[25] Li L, Feng R, Fei S, et al. NANOGP8 expression regulates gastric cancer cell progression by transactivating DBC1 in gastric cancer MKN-45 cells[J]. Oncol Lett, 2019, 17(1): 555-563.
[26] Jung M, Park KH, Kim HM, et al. Inhibiting casein kinase 2 overcomes paclitaxel resistance in gastric cancer[J]. Gastric Cancer, 2019, 22(6):1153-1163.
[1] 鹿向东 杨伟 徐广明 曲元明. 脑膜瘤中PPAR-γ的表达及曲格列酮对脑膜瘤培养细胞生长的影响[J]. 山东大学学报(医学版), 2209, 47(6): 65-.
[2] 鹿群,赵璐璐. 子宫内膜癌、子宫内膜非典型增生保留生育功能后助孕策略[J]. 山东大学学报 (医学版), 2022, 60(9): 35-41.
[3] 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71.
[4] 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80.
[5] 封海岗,刘国文,曹洪. 干扰MAD2L1基因表达对乳腺癌细胞凋亡的影响及机制[J]. 山东大学学报 (医学版), 2022, 60(10): 9-16.
[6] 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89.
[7] 丁菲,姜洁. 姜黄素对子宫内膜癌孕激素抵抗的影响[J]. 山东大学学报 (医学版), 2021, 59(4): 35-41.
[8] 薛源,林雪艳,徐歌,田永杰. 低氧诱导因子-1α在子宫内膜异位症患者血清中的表达和对在位子宫内膜间质细胞上皮-间质转化的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 41-47.
[9] 王正阳,夏艳,师凯旋,陶琨,王小杰. 曲美替尼在卵巢癌中对PAX8的表达作用[J]. 山东大学学报 (医学版), 2021, 59(10): 25-31.
[10] 杜甜甜,李娟,赵颖慧,段伟丽,王景,王允山,杜鲁涛,王传新. 长链非编码RNA LINC02474在结直肠癌中的表达特征及对细胞增殖的影响[J]. 山东大学学报 (医学版), 2021, 59(10): 59-69.
[11] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32-37.
[12] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14.
[13] 张晓璐,王丽莉,陈凯明,娄宪芝,张曼. 组蛋白去乙酰化酶SIRT1经Toll样受体4途径对巨噬细胞凋亡的调控[J]. 山东大学学报 (医学版), 2020, 58(12): 8-14.
[14] 史丽,马静,赵喜娃,关英霞,赵连梅,单保恩. miR-25-3p在40例子宫内膜腺癌组织中的表达及对KLE细胞生物学功能的影响[J]. 山东大学学报 (医学版), 2020, 58(12): 86-91.
[15] 阎慧丽,魏慕筠,颜磊,赵跃然. FK506结合蛋白52对人子宫内膜间质细胞增殖作用的影响[J]. 山东大学学报 (医学版), 2019, 57(2): 80-87.
Full text



[1] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[2] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[3] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[4] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[5] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[6] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[7] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[8] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[9] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[10] 徐继禧,陈伟健. 髓内弥漫性中线胶质瘤伴H3 K27M突变1例[J]. 山东大学学报 (医学版), 2020, 1(7): 96 -101 .