您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (4): 35-41.doi: 10.6040/j.issn.1671-7554.0.2020.1753

• 基础医学 • 上一篇    下一篇

姜黄素对子宫内膜癌孕激素抵抗的影响

丁菲,姜洁   

  1. 山东大学齐鲁医院妇产科, 山东 济南 250012
  • 发布日期:2021-04-30
  • 通讯作者: 姜洁. E-mail:qljiangjie@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(81772778)

Effects of curcumin on progesterone resistance in endometrial carcinoma

DING Fei, JIANG Jie   

  1. Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2021-04-30

摘要: 目的 观察不同浓度姜黄素对子宫内膜癌孕激素耐药细胞的影响,探讨相关信号通路在影响子宫内膜癌孕激素耐药中的作用。 方法 采用ETCM、GEPIA数据库分析姜黄素的靶点基因,进而筛选出与子宫内膜癌及耐药相关的基因;测定已建立的子宫内膜癌Ishikawa细胞的孕激素耐药模型(IshikawaPR细胞系)的耐药性,将耐药细胞按不同浓度处理分为姜黄素组(给予0、5、10、20、40、60、80 μmoL姜黄素)、孕激素组(给予0、5、10、20、40、60、90 μmoL孕激素)和姜黄素+孕激素组(同时给予相同浓度的姜黄素和孕激素),采用噻唑蓝溴化四唑(MTT)检测各组细胞的生长;采用5-乙炔基-2'-脱氧尿苷(EdU)、小室穿透实验(Transwell)、线粒体膜电位检测分析姜黄素对子宫内膜癌耐药细胞的影响;数据库分析姜黄素靶向作用的蛋白,采用Western blotting检测不同浓度姜黄素刺激后耐药细胞内蛋白水平的变化,并结合数据库分析潜在的信号通路。 结果 数据库分析结果显示,姜黄素靶点基因与PGR、ESR等肿瘤耐药基因密切相关;MTT结果显示,姜黄素能够抑制耐药细胞生长,导致细胞存活率下降(F=907.8, P<0.001),并且姜黄素和孕激素之间存在交互关系(F=51.34,P=0.004),当孕激素给药浓度分别为10 μmoL(t=16.13,P=0.026)、20 μmoL(t=33.23,P=0.006)、40 μmoL(t=35.94,P =0.005)时,联合姜黄素可较孕激素单药处理使耐药细胞抑制效率更强。姜黄素(0、10、20 μmoL)处理可抑制耐药细胞增殖(F=205.8, P<0.001)、侵袭(F=13.9,P=0.006),促进细胞凋亡(F=23.3,P=0.002);并且耐药细胞中CyclinD1、CASP3、MMP2、磷酸化的核内转录因子蛋白水平下降,孕激素受体表达升高。 结论 姜黄素可抑制子宫内膜癌孕激素抵抗,可能是通过介导转录因子NF-κB 失活实现。

关键词: 姜黄素, 子宫内膜癌, 孕激素, 耐药, 核转录因子NF-κB

Abstract: Objective To explore the effects of different concentrations of curcumin on progesterone resistant cells in endometrial carcinoma and to investigate the role of related signaling pathways influencing progesterone resistance. Methods The target genes of curcumin were analyzed in the ETCM and GEPIA databases and the interaction genes related to tumor-drug resistance were screened out. The resistance of an established progesterone-resistance model of Ishikawa cells in endometrial carcinoma(IshikawaPR cell line)was detected. Resistant cells were divided into curcumin(0, 5, 10, 20, 40, 60, 80 μmoL)groups, progesterone(0, 5, 10, 20, 40, 60, 90 μmoL)groups and curcumin+progesterone(the same concentration)groups, according to different treatments. The proliferation of cells in each group was determined with MTT. The effects of curcumin on the resistant cells were assessed with EDU, Transwell and mitochondrial membrane potential. The changes of intracellular protein levels after curcumin stimulation at different concentrations were determined with Western blotting. The potential signaling pathways were analyzed in the databases. Results Analyses of the databases indicated that curcumin target genes were closely related to tumor-drug resistance genes such as PGR and ESR. MTT results showed that curcumin inhibited the growth of drug-resistant cells, leading to a decrease in cell survival rate(F=907.8, P<0.001), and there was an interactive relationship between curcumin and progesterone(F=51.34, P=0.004). When the concentrations of progesterone were 10 μmoL(t=16.13, P=0.026), 20 μmoL(t=33.23, P=0.006), and 40μmoL(t=35.94, P=0.005), combination with curcumin inhibited drug-resistant cells more effectively than the use of progesterone alone. Curcumin treatment(0, 10, 20 μmoL)inhibited the proliferation(F=205.8, P<0.001), invasion(F=13.9, P=0.006)and promoted apoptosis(F=23.3, P=0.002)of drug-resistant cells. Western blotting showed that after curcumin treatment, the levels of CyclinD1, CASP3, MMP2 and p-NFκB decreased while the level of PR increased in resistant cells. Conclusion Curcumin inhibits progesterone resistance in endometrial carcinoma, possibly by mediating inactivation of transcription factor NFκB.

Key words: Curcumin, Endometrial carcinoma, Progesterone, Resistance, Nuclear transcription factor-κB

中图分类号: 

  • R711
[1] 吴彧, 夏彦清, 伍玥, 等. 炎性细胞模型中姜黄素对胆固醇逆转运蛋白ABCA1和ABCG1基因的影响 [J]. 山东大学学报(医学版), 2016, 54(11): 24-26. WU Song, XIA Yanqing, WU Yue, et al. Effect of curcumin on ABCA1 and ABCG1 genes in an inflammatory cell model [J]. Journal of Shandong University(Health Sciences), 2016, 54(11): 24-26.
[2] Hosseini-Zare M S, Sarhadi M, Zarei M, et al. Synergistic effects of curcumin and its analogs with other bioactive compounds: A comprehensive review [J]. Eur J Med Chem, 2021, 210: 113072. doi: 10.1016/j.ejmech.2020.113072.
[3] Mukherjee S, Baidoo J N E, Fried A, et al. Using curcumin to turn the innate immune system against cancer [J]. Biochem Pharmacol, 2020, 176: 113824. doi: 10.1016/j.bcp.2020.113824.
[4] Gentry-Maharaj A, Karpinskyj C. Current and future approaches to screening for endometrial cancer [J]. Best Pract Res Clin Obstet Gynaecol, 2020, 65:79-97.
[5] 沈偲, 滕银成. 子宫内膜癌孕激素耐药机制及新型疗法的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(12): 1677-1682. SHEN Cai, TENG Yincheng. Research progress on the mechanism of progesterone resistance and novel therapy in endometrial carcinoma [J]. Journal of Shanghai Jiaotong University(Health Sciences), 2020, 40(12): 1677-1682.
[6] Zhou Q, Li W, Kong D, et al. DACH1 suppresses epithelial to mesenchymal transition(EMT)through Notch1 pathway and reverses progestin resistance in endometrial carcinoma [J]. Cancer Med, 2019, 8(9): 4380-4388.
[7] Ozawa-umeta H, Kishimoto A, Imaizumi A, et al. Curcumin β-D-glucuronide exhibits anti-tumor effects on oxaliplatin-resistant colon cancer with less toxicity in vivo [J]. Cancer Sci, 2020, 111(5): 1785-1793.
[8] Zeng Y, Du Q, Zhang Z, et al. Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress [J]. Arch Biochem Biophys, 2020, 694: 108613. doi: 10.1016/j.abb.2020.108613
[9] Li W, Sun L, Lei J, et al. Curcumin inhibits pancreatic cancer cell invasion and EMT by interfering with tumor-stromal crosstalk under hypoxic conditions via the IL-6/ERK/NF-κB axis [J]. Oncol Rep, 2020, 44(1): 382-392.
[10] Liczbinski P, Michalowicz J, Bukowska B. Molecular mechanism of curcumin action in signaling pathways: Review of the latest research [J]. Phytother Res, 2020, 34(8): 1992-2005.
[11] Patel SS, Acharya A, Ray RS, et al. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease [J]. Crit Rev Food Sci Nutr, 2020, 60(6): 887-939.
[12] Barzegar A, Moosavi-Movahedi AA. Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin [J]. PLoS One, 2011, 6(10): e26012.
[13] Fathy Abd-Ellatef GE, Gazzano E, Chirio D, et al. Curcumin-loaded solid lipid Nanoparticles bypass P-Glycoprotein mediated doxorubicin resistance in triple negative breast cancer cells [J]. Pharmaceutics, 2020, 12(2):96. doi: 10.3390/pharmaceutics12020096.
[14] Chen P, Huang HP, Wang Y, et al. Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death [J]. J Exp Clin Cancer Res, 2019, 38(1): 254. doi: 10.1186/s13046-019-1234-8.
[15] Ashrafizadeh M, Zarrabi A, Hashemi F, et al. Curcumin in cancer therapy: a novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects [J]. Life Sci, 2020, 256:117984. doi: 10.1016/j.lfs.2020.117984.
[16] He B, Wei W, Liu J, et al. Synergistic anticancer effect of curcumin and chemotherapy regimen FP in human gastric cancer MGC-803 cells [J]. Oncol Lett, 2017, 14(3): 3387-3394.
[17] Yoshida K, Toden S, Ravindranathan P, et al. Curcumin sensitizes pancreatic cancer cells to gemcitabine by attenuating PRC2 subunit EZH2, and the lncRNA PVT1 expression [J]. Carcinogenesis, 2017, 38(10): 1036-1046.
[18] Papiez MA, Krzysciak W, Szade K, et al. Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species [J]. Drug Des Devel Ther, 2016, 10:557-570. doi: 10.2147/DDDT.S92687.eCollection 2016.
[19] Keyvani-Ghamsari S, Khorsandi K, Gul A. Curcumin effect on cancer cells multidrug resistance: An update [J]. Phytother Res, 2020, 34(10): 2534-2556.
[20] Bi M, Zhang Z, Jiang YZ, et al. Enhancer reprogramming driven by high-order assemblies of transcription factors promotes phenotypic plasticity and breast cancer endocrine resistance [J]. Nat Cell Biol, 2020, 22(6): 701-715.
[21] Cai H, Yan L, Liu N, et al. IFI16 promotes cervical cancer progression by upregulating PD-L1 in immunomicroenvironment through STING-TBK1-NF-kB pathway [J]. Biomed Pharmacother, 2020, 123: 109790. doi: 10.1016/j.biopha.2020.110077.
[22] Vergani E, Dugo M, Cossa M, et al. miR-146a-5p impairs melanoma resistance to kinase inhibitors by targeting COX2 and regulating NFkB-mediated inflammatory mediators [J]. Cell Commun Signal, 2020, 18(1): 156. doi: 10.1186/s12964-020-00601-1.
[23] Xing Y, Yan J, Niu Y. PXR: a center of transcriptional regulation in cancer [J]. Acta Pharm Sin B, 2020, 10(2): 197-206.
[24] Westerouen Van Meeteren MJ, Drenth JPH, Tjwa ETTL. Elafibranor: a potential drug for the treatment of nonalcoholic steatohepatitis(NASH)[J]. Expert Opin Investig Drugs, 2020, 29(2): 117-123.
[25] Toporova L, Balaguer P. Nuclear receptors are the major targets of endocrine disrupting chemicals [J]. Mol Cell Endocrinol, 2020, 502: 110665. doi: 10.1016/j.mce.2019.110665.
[26] 崔明花, 付二花, 林贞花, 等. 姜黄素抗肿瘤药理作用的研究进展[J]. 中国临床药理学杂志, 2021, 37(2): 186-188. CUI Minghua, FU Erhua, LIN Zhenhua, et al. Research progress of antitumor pharmacological effects of curcumin [J]. The Chinese Journal of Clinical Pharmacology, 2021, 37(2): 186-188.
[1] 葛丽娟 金瑞峰 王纪文 许新升 李癊. 多药耐药基因1 C1236T多态性与癫痫患者对药物反应性的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 99-102.
[2] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
[3] 鹿群,赵璐璐. 子宫内膜癌、子宫内膜非典型增生保留生育功能后助孕策略[J]. 山东大学学报 (医学版), 2022, 60(9): 35-41.
[4] 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71.
[5] 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80.
[6] 李燕,刘静,李娟,杨秋红. 50例孕产妇血流感染临床特征及胎盘病理分析[J]. 山东大学学报 (医学版), 2022, 60(1): 48-54.
[7] 鞠建华,杨镇业,李青连,韩亚楠,李艳青,乔伊君,杨虎,张华然. 微生物药物研究开发现状与思考[J]. 山东大学学报 (医学版), 2021, 59(9): 43-50,63.
[8] 初竹秀,赵文静,李小燕,孔晓丽,马婷婷,江立玉,杨其峰. 218例女性乳腺癌患者行新辅助化疗及伴随分子标志物改变的临床价值[J]. 山东大学学报 (医学版), 2021, 59(9): 130-139.
[9] 哈春芳,李茹月. 卵巢癌耐药机制与靶向治疗策略的研究进展[J]. 山东大学学报 (医学版), 2021, 59(9): 117-123.
[10] 徐兵,李勇,刘明,刘永辉. 沉默PRRX1基因表达可增强前列腺癌耐药细胞株PC-3/DTX对多西他赛的敏感性[J]. 山东大学学报 (医学版), 2021, 59(6): 103-110.
[11] 赵立红,赵书平,聂升刚,孙晶,姜同峰. 507例男性生殖道感染病原体分布及耐药特征[J]. 山东大学学报 (医学版), 2021, 59(1): 55-58.
[12] 熊艺璇,赵斌,贾凌璐,张文静,徐欣. 姜黄素通过Nrf2信号通路促进炎症状态下牙周膜干细胞的成骨分化[J]. 山东大学学报 (医学版), 2020, 58(5): 19-26.
[13] 孙艳婷,吴大玮,王晓斐,徐建,王睿. 新建医院ICU临床分离菌的分布及耐药变迁[J]. 山东大学学报 (医学版), 2020, 58(2): 64-71.
[14] 付振美,马铭泽. 溃疡性结肠炎患者肠黏膜P糖蛋白的表达及其临床意义[J]. 山东大学学报 (医学版), 2020, 58(12): 54-59.
[15] 张宁,杨燕,李锐,殷运红,李昊,曲仪庆. 慢阻肺患者感染鲍曼不动杆菌危险因素及耐药性分析[J]. 山东大学学报 (医学版), 2019, 57(9): 88-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姜保东,马祥兴,王青,王茜,冯晓源,李克,于富华 . 脑CT静脉造影扫描时相及重建层厚的选择[J]. 山东大学学报(医学版), 2008, 46(11): 1084 -1086 .
[2] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[3] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[4] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[5] 朱晓丽1,郭淑玲1,苏磊1,冯玉新2,袁方曙1. 蠕形螨全蛋白提取及相对分子量鉴定[J]. 山东大学学报(医学版), 2014, 52(5): 58 -62 .
[6] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[7] 钟女娟1,宋咏梅2,刘更生2,薛付忠1,刘言训1. 中药经验要素贝叶斯网络模型构建及应用[J]. 山东大学学报(医学版), 2012, 50(2): 157 .
[8] 刘海春 张剑锋 陈允震. 骨质疏松大鼠股骨生物力学特性与骨胶原质量变化的相关研究[J]. 山东大学学报(医学版), 2009, 47(5): 42 -45 .
[9] 冯复利1,魏树珍2,张永欢3,李莉1,陈融1,李瑞峰1. 胰岛素抵抗大鼠高死亡率与Klotho表达关系的研究[J]. 山东大学学报(医学版), 2010, 48(6): 5 -8 .
[10] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .