您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (5): 74-80.doi: 10.6040/j.issn.1671-7554.0.2021.1475

• • 上一篇    下一篇

芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达

申晓畅1,孙一卿1,颜磊2,赵兴波1   

  1. 1.山东大学附属省立医院妇科, 山东 济南 250021;2.山东大学附属生殖医院妇科, 山东 济南 250001
  • 发布日期:2022-06-01
  • 通讯作者: 赵兴波. E-mail:zxb0626@126.com
  • 基金资助:
    山东省自然科学基金(ZR2018MH207)

Expression of aryl hydrocarbon receptor nuclear translocator-like 2 in endometrial cancer

SHEN Xiaochang1, SUN Yiqing1, YAN Lei2, ZHAO Xingbo1   

  1. 1. Department of Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China;
    2. Department of Gynecology, Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250001, Shandong, China
  • Published:2022-06-01

摘要: 目的 探讨芳基烃受体核转位因子样蛋白2(ARNTL2)在子宫内膜癌中的表达、作用及其可能的信号通路。 方法 采用免疫组织化学SP法、RT-PCR和Western blotting实验检测子宫内膜癌及正常内膜组织中ARNTL2的表达;小干扰RNA(Si-ARNTL2)敲低ARNTL2 的表达,CCK-8实验检测细胞增殖能力,划痕愈伤实验和小室穿透实验(Transwell)检测细胞迁移和侵袭能力;Western blotting检测细胞上皮间质转化指标:N-钙黏蛋白(N-cad)、E-钙黏蛋白(E-cad)、Vimentin蛋白、Snail蛋白、Slug蛋白及Wnt/β-catenin信号通路相关蛋白(Wnt蛋白、β-连环蛋白)的表达。 结果 免疫组织化学、RT-PCR和Western blotting结果均显示,ARNTL2在子宫内膜癌组织中表达上调(t免疫组织化学=2.213, P=0.033;tRT-PCR=4.766, P<0.001;tWestern blotting=2.659,P=0.012);Si-ARNTL2转染可成功降低子宫内膜癌细胞系(KLE和Ishikawa)ARNTL2的表达。敲低ARNTL2后,CCK8实验结果显示,两种细胞的吸光度值下降(P均<0.05);划痕愈伤实验结果显示,两种细胞的划痕愈合率下降(P均<0.001);Transwell侵袭及迁移实验结果均显示,两种细胞穿膜细胞数减少(P均<0.01);Western blotting实验结果显示,两细胞系E-cad表达上升(P均<0.05),N-cad、Vimentin、Snail、Slug蛋白表达下降(P均<0.05),两细胞Wnt、β-catenin蛋白的表达均下降(P均<0.05)。 结论 ARNTL2在子宫内膜癌组织中的表达升高,降低子宫内膜癌细胞中ARNTL2的表达可抑制子宫内膜癌的增殖和转移,其可能通过Wnt/β-catenin通路发挥作用。

关键词: 芳基烃受体核转位因子样蛋白2, 子宫内膜癌, 增殖, 转移, 上皮间质转化, 信号通路

Abstract: Objective To explore the expression and function of aryl hydrocarbon receptor nuclear translocator-like 2(ARNTL2)in endometrial cancer(EC)and its possible signal pathway. Methods The expression of ARNTL2 in EC and normal tissues was detected with immunohistochemistry, RT-PCR and Western blotting. After ARNTL2 knock down with Si-RNA(Si-ARNTL2), cell proliferation, invasion and migration were detected with CCK-8 assay, scratch healing test and Transwell assay, respectively. The epithelial-mesenchymal transition(EMT)indicators, including E-cad, N-cad, Vimentin, Snail and Slug, and Wnt/β-catenin signal pathway related proteins, including Wnt and β-catenin, were detected with Western blotting. Results Immunohistochemistry, RT-PCR and Western blotting showed that the expression of ARNTL2 was up-regulated in EC tissue(tImmunohistochemistry=2.213, P=0.033; tRT-PCR=4.766, P<0.001; tWestern blotting=2.659, P=0.012). Si-ARNTL2 transfection successfully reduced ARNTL2 expression in EC cell lines(KLE and Ishikawa). After knockdown of ARNTL2, CCK8 assay showed reduction in the absorbance of both cell lines(P<0.05); Scratch healing test showed a suppression on wound healing rate(P<0.001); Transwell invasion and migration assay showed that the number of transmembrane cells decreased(P<0.01). Western blotting showed that the expression of E-cad in the two cell lines increased, while the expressions of N-cad, Vimentin, Snail and Slug decreased(P<0.05), and the expressions of Wnt and β-catenin decreased(P<0.05). Conclusion The expression of ARNTL2 is higher in EC tissue than in normal tissue. Knockdown of ARNTL2 can inhibit cell proliferation and metastasis in EC. ARNTL2 may promote tumor proliferation and metastasis through Wnt/β-catenin pathway.

Key words: Aryl hydrocarbon receptor nuclear translocator-like 2, Endometrial cancer, Proliferation, Metastasis, Epithelial-mesenchymal transition, Signal pathway

中图分类号: 

  • R737.33
[1] Morice P, Leary A, Creutzberg C, et al. Endometrial cancer [J]. Lancet, 2016, 387(10023): 1094-1108.
[2] Siegel RL, Miller KD, Fuchs HE. Cancer statistics, 2021 [J]. CA Cancer J Clin, 2021, 71(1): 7-33.
[3] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020 [J]. CA Cancer J Clin, 2020, 70(1): 7-30.
[4] Wu H, Dunnett S, Ho YS, et al. The role of sleep deprivation and circadian rhythm disruption as risk factors of Alzheimers disease [J]. Front Neuroendocrinol, 2019, 54: 100764. doi:10.1016/j.yfrne.2019.100764.
[5] Zhou J, Wang J, Zhang X, et al. New insights into cancer chronotherapies [J]. Front Pharmacol, 2021, 12: 741295. doi:10.3389/fphar.2021.741295.
[6] 中国抗癌协会妇科肿瘤专业委员会.子宫内膜癌诊断与治疗指南(2021年版)[J]. 中国癌症杂志, 2021, 31(6): 501-512.
[7] Lu KH, Broaddus RR. Endometrial cancer [J]. N Engl J Med, 2020, 383(21): 2053-2064.
[8] Gery S, Koeffler HP. Circadian rhythms and cancer [J]. Cell Cycle, 2010, 9(6): 1097-1103.
[9] Crespo M, Leiva M, Sabio G. Circadian clock and liver cancer [J]. Cancers(Basel), 2021, 13(14): 3631. doi: 10.3390/cancers13143631.
[10] Yeh KT, Yang MY, Liu TC, et al. Abnormal expression of period 1(PER1)in endometrial carcinoma [J]. J Pathol, 2005, 206(1): 111-120.
[11] Wang Z, Wang H, Wang Z, et al. Associated analysis of PER1/TUBB2B with endometrial cancer development caused by circadian rhythm disorders [J]. Med Oncol, 2020, 37(10): 90. doi:10.1007/s12032-020-01415-4.
[12] Shih MC, Yeh KT, Tang KP, et al. Promoter methylation in circadian genes of endometrial cancers detected by methylation-specific PCR [J]. Mol Carcinog, 2006, 45(10): 732-740.
[13] Takeda N, Maemura K, Horie S, et al. Thrombomodulin is a clock-controlled gene in vascular endothelial cells [J]. J Biol Chem, 2007, 282(45): 32561-32567.
[14] Wang Y, Peng S, Liu T, et al. The potential role of clock genes in children attention-deficit/hyperactivity disorder [J]. Sleep Med, 2020, 71: 18-27. doi: 10.1016/j.sleep.2020.02.021.
[15] Barbosa Vieira TK, Jurema da Rocha Leão M, Pereira LX, et al. Correlation between circadian rhythm related genes, type 2 diabetes, and cancer: insights from metanalysis of transcriptomics data [J]. Mol Cell Endocrinol, 2021, 526: 111214. doi:10.1016/j.mce.2021.111214.
[16] Shi SQ, Ansari TS, McGuinness OP, et al. Circadian disruption leads to insulin resistance and obesity [J]. Curr Biol, 2013, 23(5): 372-381.
[17] Azevedo PG, Miranda LR, Nicolau ES, et al. Genetic association of the PERIOD3(PER3)clock gene with extreme obesity [J]. Obes Res Clin Pract, 2021, 15(4): 334-338.
[18] Lu M, Huang L, Tang Y, et al. ARNTL2 knockdown suppressed the invasion and migration of colon carcinoma: decreased SMOC2-EMT expression through inactivation of PI3K/AKT pathway [J]. Am J Transl Res, 2020, 12(4): 1293-1308.
[19] Brady JJ, Chuang CH, Greenside PG, et al. An arntl2-driven secretome enables lung adenocarcinoma metastatic self-sufficiency [J]. Cancer Cell, 2016, 29(5): 697-710.
[20] Wang Z, Liu T, Xue W, et al. ARNTL2 promotes pancreatic ductal adenocarcinoma progression through TGF/BETA pathway and is regulated by miR-26a-5p [J]. Cell Death Dis, 2020, 11(8): 692. doi:10.1038/s41419-020-02839-6.
[21] Ha NH, Long J, Cai Q, et al. The circadian rhythm gene Arntl2 is a metastasis susceptibility gene for estrogen receptor-negative breast cancer [J]. PLoS Genet, 2016, 12(9): e1006267. doi:10.1371/journal.pgen.1006267.
[22] Pan G, Liu Y, Shang L, et al. EMT-associated microRNAs and their roles in cancer stemness and drug resistance [J]. Cancer Commun(Lond), 2021, 41(3): 199-217.
[23] Usman S, Waseem NH, Nguyen TKN, et al. Vimentin is at the heart of epithelial mesenchymal transition(EMT)mediated metastasis [J]. Cancers(Basel), 2021, 13(19): 4985. doi: 10.3390/cancers13194985.
[24] Lei Y, Chen L, Zhang G, et al. MicroRNAs target the Wnt/β-catenin signalling pathway to regulate epithelial-mesenchymal transition in cancer(Review)[J]. Oncol Rep, 2020, 44(4): 1299-1313.
[25] Rao TP, Kühl M. An updated overview on wnt signalling pathways: a prelude for more [J]. Circ Res, 2010, 106(12): 1798-1806.
[1] 王晓磊 张海涛 张辉 郭成浩. 舒血宁注射液对高碘致培养血管内皮细胞损伤的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 38-.
[2] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
[3] 张振伟,李佳,陈克明. IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移[J]. 山东大学学报 (医学版), 2022, 60(9): 74-84.
[4] 邹品衡,陈添果,胡康,李伟才. 过表达miR-27a对急性脑梗死大鼠海马神经元损伤的影响及其机制[J]. 山东大学学报 (医学版), 2022, 60(9): 59-66.
[5] 鹿群,赵璐璐. 子宫内膜癌、子宫内膜非典型增生保留生育功能后助孕策略[J]. 山东大学学报 (医学版), 2022, 60(9): 35-41.
[6] 高中霞,张铭,樊明德,谭晨阳,王梦迪,王超,樊跃飞,丁守銮,王成伟. 伽玛刀治疗81例肺癌脑转移瘤的疗效及预后因素[J]. 山东大学学报 (医学版), 2022, 60(8): 44-49.
[7] 张秉芬,周胜红,王哲. 延龄草皂苷通过抑制TGF-β/Smad3与Wnt/β-catenin信号通路改善大鼠肺纤维化[J]. 山东大学学报 (医学版), 2022, 60(8): 23-29.
[8] 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71.
[9] 相宇娇,刘强,刘璐,石艳. 原发免疫性血小板减少症树突状细胞异常免疫反应机制[J]. 山东大学学报 (医学版), 2022, 60(7): 89-97.
[10] 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7.
[11] 虎娜,孙苗,邢莎莎,许丹霞,海小明,马玲,杨丽,勉昱琛,何瑞,陈冬梅,马会明. 月见草油抵抗多囊卵巢综合征大鼠卵巢氧化应激[J]. 山东大学学报 (医学版), 2022, 60(5): 22-30.
[12] 陈兆波,方敏,薛浩然,刘春艳. 去泛素化酶USP35促进非小细胞肺癌细胞迁移和侵袭[J]. 山东大学学报 (医学版), 2022, 60(4): 30-37.
[13] 赵婷婷,齐亚娜,张颖,袁冰,韩明勇. 小鼠乳腺癌诱导转移前肺组织微环境的改变[J]. 山东大学学报 (医学版), 2022, 60(4): 24-29.
[14] 钟黎黎,盛莹,郭江虹,阳双健,何宜静. LncRNA-UCA1通过靶向调控miR-182-5p对滋养细胞侵袭与转移的影响[J]. 山东大学学报 (医学版), 2022, 60(3): 76-82.
[15] 宋甜,付琳琳,王秋敏,杨晓,王莹,边月红,石玉华. 脂肪酸转运蛋白1在多囊卵巢综合征患者颗粒细胞中的表达[J]. 山东大学学报 (医学版), 2022, 60(2): 22-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[2] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[3] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[4] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[5] 丁玲1,2, 巩会平1,杜贻萌1,王欣1,张岩3,王旭平2,鹿庆华1. SIRT3 siRNA对ox-LDL刺激的人主动脉内皮细胞ICAM-1、E-selectin表达的影响[J]. 山东大学学报(医学版), 2014, 52(4): 43 -48 .
[6] 姜保东,马祥兴,王青,王茜,冯晓源,李克,于富华 . 脑CT静脉造影扫描时相及重建层厚的选择[J]. 山东大学学报(医学版), 2008, 46(11): 1084 -1086 .
[7] 李洧,李道卫,叶茜,高顺翠,姜淑娟. 经支气管镜针吸活检在纵隔疾病诊断中的价值[J]. 山东大学学报(医学版), 2008, 46(11): 1063 -1065 .
[8] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .
[9] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[10] 王旭平,赵玲,冯玉新,商林珊,刘金成,曹伟朋,朱晓音,辛华. 绞股蓝总苷对谷氨酸诱导的胎鼠大脑皮层神经元氧化性损伤保护机制的研究[J]. 山东大学学报(医学版), 2006, 44(6): 564 -567 .