您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (9): 59-66.doi: 10.6040/j.issn.1671-7554.0.2021.1383

• 基础医学 • 上一篇    下一篇

过表达miR-27a对急性脑梗死大鼠海马神经元损伤的影响及其机制

邹品衡1,陈添果1,胡康2,李伟才3   

  1. 南华大学衡阳医学院附属第三医院 1.检验科;2.神经内科;3.急诊科, 湖南 衡阳 421900
  • 发布日期:2022-09-02
  • 通讯作者: 邹品衡. E-mail:hcwlb327@163.com
  • 基金资助:
    湖南省教育厅科学研究项目(20C1596);衡阳市科技局指导性项目(2020jh042741)

Effects and mechanism of overexpression of miR-27a on hippocampal neuronal injury in rats with acute cerebral infarction

ZOU Pinheng1, CHEN Tianguo1, HU Kang2, LI Weicai3   

  1. 1. Department of Clinical Laboratory;
    2. Department of Internal Medicine-Neurology;
    3. Department of Emergency, The Third Affiliated Hospital of Hengyang Medical College, University of South China, Hengyang 421900, Hunan, China
  • Published:2022-09-02

摘要: 目的 探究过表达miR-27a对急性脑梗死大鼠海马神经元损伤的影响及可能机制。 方法 将60只SD大鼠随机分为假手术组(Sham组)、模型组(Model组)、Agomir阴性对照组(Agomir-NC组)和miR-27a agomir组(Agomir组),每组15只。采用改良Longa线栓法构建急性脑梗死大鼠模型,于造模前1天和造模成功时,分别经侧脑室注射15 mg/kg的agomir-NC或miR-27a agomir。术后72 h,采用Zea-Longa评分法对大鼠神经功能缺损进行评分;采用氯化三苯基四氮唑染色法(TTC)测量大鼠脑梗死面积;原位缺口末端标记法(TUNEL)检测大鼠海马组织细胞凋亡水平;qRT-PCR法检测各组大鼠海马组织miR-27a的表达水平;流式细胞术(FCM)检测各组大鼠海马组织中Iba-1+/CD68+小胶质细胞所占百分比;酶联免疫吸附实验(ELISA)检测各组大鼠海马组织IL-1β、IL-6、TNF-α及iNOS的表达水平;Western blotting 检测大鼠海马组织中TLR4信号通路相关蛋白TLR4、MyD88、p-NF-κB p65及NF-κB p65表达情况。 结果 与Sham组相比,Model组大鼠海马组织细胞凋亡水平及Iba-1+/CD68+小胶质细胞水平均显著增加(均P<0.001),海马组织中IL-1β、IL-6、TNF-α水平和iNOS活性及TLR4、MyD88、p-NF-κB p65蛋白表达水平均显著升高(P<0.05),海马组织中miR-27a表达水平显著降低(P<0.001)。与Model组比,Agomir组大鼠神经功能缺损评分、脑梗死面积、海马组织细胞凋亡水平及Iba-1+/CD68+小胶质细胞水平均显著降低(均P<0.001),海马组织中IL-1β、IL-6、TNF-α水平和iNOS活性及TLR4、MyD88、p-NF-κB p65蛋白表达水平均显著下降(P<0.05),海马组织miR-27a表达水平显著上升(P<0.001)。 结论 过表达miR-27a通过抑制小胶质细胞M1型极化减轻急性脑梗死大鼠海马神经元损伤,其机制可能与抑制TLR4/NF-κB信号通路活化有关。

关键词: miR-27a, 急性脑梗死, 小胶质细胞, TLR4/NF-κB信号通路

Abstract: Objective To investigate the effects of miR-27a overexpression on hippocampal neuron injury in rats with acute cerebral infarction(ACI)and its possible mechanism. Methods A total of 60 SD rats were randomly divided into sham operation group(Sham group), Model group, agomir negative control group(Agomir-NC group)and miR-27a agomir group(Agomir group), with 15 rats in each group. Modified Longa thread embolization method was used to establish the rat models of ACI. One day before modeling and the time when modeling was successful, 15 mg/kg agomir-NC or miR-27a agomir were injected through the lateral ventricle. The neurological deficits of rats were evaluated with Zea-Longa score 72 h after operation. The cerebral infarct size of rats was measured with triphenyltetrazole chloride(TTC)staining. The apoptosis level of hippocampal tissue was detected with TUNEL. The expression of miR-27a in the hippocampus was detected with qRT-PCR. The percentage of Iba-1+/CD68+ microglia in the hippocampus was detected with flow cytometry(FCM). The levels of IL-1β, IL-6, TNF-α and iNOS in hippocampus were detected with enzyme-linked immunosorbent assay(ELISA). The expressions of toll-like receptor 4(TLR4)signaling pathway related proteins including TLR4, MyD88, p-NF-κB p65 and NF-κB p65 in hippocampus were detected with Western blotting. Results Compared with Sham group, the Model group had significantly increased apoptosis of hippocampal cells and level of Iba-1+/CD68+ microglia(P<0.001), and significantly increased levels of IL-1β, IL-6, TNF-α and iNOS and protein expressions of TLR4, MyD88 and p-NF-κB p65(P<0.05), but significantly decreased expression of miR-27a(P<0.001). Compared with Model group, the agomir group had significantly decreased neurological deficits score, cerebral infarction area, apoptosis level of hippocampal cells and level of Iba-1+/CD68+ microglia(P<0.001), and significantly decreased levels of IL-1β, IL-6, TNF-α and iNOS and protein expressions of TLR4, MyD88 and p-NF-κB p65(P<0.05), but significantly increased expression of miR-27a(P<0.001). Conclusion Overexpression of miR-27a can alleviate hippocampal neuronal injury in ACI rats by inhibiting microglia M1-type polarization, and the mechanism may be related to the inhibition of TLR4/NF-κB signaling pathway.

Key words: miR-27a, Acute cerebral infarction, Microglia cells, TLR4/NF-κB signaling pathway

中图分类号: 

  • R743.33
[1] Tu WJ, Chao BH, Ma L, et al. Case-fatality, disability and recurrence rates after first-ever stroke: a study from bigdata observatory platform for stroke of China[J]. Brain Res Bull, 2021, 175: 130-135. doi: 10.1016/j.brainresbull.2021.07.020.
[2] Krishnamurthi RV, Ikeda T, Feigin VL. Global, regional and country-specific burden of ischaemic stroke, intracerebral haemorrhage and subarachnoid haemorrhage: a systematic analysis of the global burden of disease study 2017[J]. Neuroepidemiology, 2020, 54(2): 171-179.
[3] Voet S, Prinz M, van Loo G. Microglia in central nervous system inflammation and multiple sclerosis pathology[J]. Trends Mol Med, 2019, 25(2): 112-123.
[4] 桑元伊, 邹小乙, 张瑶, 等. 小胶质细胞参与缺血性脑卒中的双重作用[J]. 国际免疫学杂志, 2019, 42(1): 73-77. SANG Yuanyi, ZOU Xiaoyi, ZHANG Yao, et al. Microglia and ischemic stroke: a double- edged sword[J]. International Journal of Immunology, 2019, 42(1): 73-77.
[5] Chandan K, Gupta M, Sarwat M. Role of host and pathogen-derived microRNAs in immune regulation during infectious and inflammatory diseases[J]. Front Immunol, 2020, 10: 3081. doi: 10.3389/fimmu.2019.03081.
[6] 方雪, 谭卫星, 何成, 等. MicroRNA调控小胶质细胞极化在神经系统疾病中作用和机制研究进展[J]. 生理学报, 2015, 67(1): 32-40. FANG Xue, TAN Weixing, HE Cheng, et al. MicroRNAs in microglia polarization and central nervous system diseases: mechanism and functions[J]. Acta Physiologica Sinica, 2015, 67(1): 32-40.
[7] Wang Y, Wang D, Jin Z. miR-27a suppresses TLR4 ginduced renal ischemia reperfusion injury[J]. Mol Med Rep, 2019, 20(2): 967-976.
[8] 范崇桂, 张燕平, 付国惠, 等. 槲皮素对急性脑梗死大鼠模型神经功能和氧化应激的影响[J]. 中华实验外科杂志, 2020, 37(4): 685-688. FAN Chonggui, ZHANG Yanping, FU Guohui, et al. Effects of quercetin on nerve function and oxidative stress in rat model of acute cerebral infarction[J]. Chinese Journal of Experimental Surgery, 2020, 37(4): 685-688.
[9] 江海洋, 陈浩, 顾中华. 白藜芦醇保护缺血性脑卒中大鼠神经功能的作用机制研究[J]. 云南中医学院学报, 2018, 41(3): 23-26. JIANG Haiyang, CHEN Hao, GU Zhonghua. Protective effect mechanism of resveratrol on neurological function in rats with ischemic stroke[J]. Journal of Yunnan University of Traditional Chinese Medicine, 2018, 41(3): 23-26.
[10] Chen L, Yang Q, Ding R, et al. Carotid thickness and atherosclerotic plaque stability, serum inflammation, serum MMP-2 and MMP-9 were associated with acute cerebral infarction[J]. Exp Ther Med, 2018, 16(6): 5253-5257.
[11] 程朝辉, 张跃亮, 黄炜, 等. 急性脑梗死神经功能恢复与炎症因子的关系[J]. 海南医学, 2019, 30(19): 2456-2458. CHENG Zhaohui, ZHANG Yueliang, HUANG Wei, et al. Correlation of neurological function recovery with inflammatory factors in acute cerebral infarction patients[J]. Hainan Medical Journal, 2019, 30(19): 2456-2458.
[12] 王颖芳, 陈艳琳, 王文娟. 中药miRNA研究进展[J]. 中国新药杂志, 2019, 28(4): 432-436. WANG Yingfang, CHEN Yanlin, WANG Wenjuan. Research progress of miRNAs in traditional Chinese medicines[J]. Chinese Journal of New Drugs, 2019, 28(4): 432-436.
[13] Cazzanelli P, Wuertz-Kozak K. MicroRNAs in intervertebral disc degeneration, apoptosis, inflammation, and mechanobiology[J]. Int J Mol Sci, 2020, 21(10): 3601. doi: 10.3390/ijms21103601.
[14] Wu L, Wang Q, Guo F, et al. Involvement of miR-27a-3p in diabetic nephropathy via affecting renal fibrosis, mitochondrial dysfunction, and endoplasmic reticulum stress[J]. J Cell Physiol, 2021, 236(2): 1454-1468.
[15] Barisciano G, Colangelo T, Rosato V, et al. miR-27a is a master regulator of metabolic reprogramming and chemoresistance in colorectal cancer[J]. Br J Cancer, 2020, 122(9): 1354-1366.
[16] Xiao Y, Li B, Liu J. miRNA-27a regulates arthritis via PPARγ in vivo and in vitro[J]. Mol Med Rep, 2018, 17(4): 5454-5462.
[17] Xi T, Jin F, Zhu Y, et al. miR-27a-3p protects against blood-brain barrier disruption and brain injury after intracerebral hemorrhage by targeting endothelial aquaporin-11[J]. J Biol Chem, 2018, 293(52): 20041-20050.
[18] Lv X, Yan J, Jiang J, et al. MicroRNA-27a-3p suppression of peroxisome proliferator-activated receptor-γ contributes to cognitive impairments resulting from sevoflurane treatment[J]. J Neurochem, 2017, 143(3): 306-319.
[19] Cai Q, Wang T, Yang WJ, et al. Protective mechanisms of microRNA-27a against oxygen-glucose deprivation-induced injuries in hippocampal neurons[J]. Neural Regen Res, 2016, 11(8): 1285-1292.
[20] Prinz M, Jung S, Priller J. Microglia biology: one century of evolving concepts[J]. Cell, 2019, 179(2): 292-311.
[21] Du X, Xu Y, Chen S, et al. Inhibited CSF1R alleviates ischemia injury via inhibition of microglia M1 polarization and nlrp3 pathway[J]. Neural Plast, 2020, 2020: 8825954. doi: 10.1155/2020/8825954.
[22] Lv YN, Ou-Yang AJ, Fu LS. MicroRNA-27a negatively modulates the inflammatory response in lipopolysaccharide-stimulated microglia by targeting TLR4 and IRAK4[J]. Cell Mol Neurobiol, 2017, 37(2): 195-210.
[23] 于莉, 潘靖丹, 杜娈英, 等. TLR2和TLR4在抗病毒天然免疫应答中的新作用[J]. 病毒学报, 2018, 34(4): 570-578. YU Li, PAN Jingdan, DU Luanying, et al. Novel roles of TLR2 and TLR4 in innate immunity against virus infections[J]. Chinese Journal of Virology, 2018, 34(4): 570-578.
[24] 单佳铃, 程虹毓, 文乐, 等. TLR/MyD88/NF-κB信号通路参与不同疾病作用机制研究进展[J]. 中国药理学通报, 2019, 35(4): 451-455. SHAN Jialing, CHENG Hongyu, WEN Le, et al. Advances in research of TLR/MyD88/NF-κB signaling pathway in different diseases[J]. Chinese Pharmacological Bulletin, 2019, 35(4): 451-455.
[25] 金平, 王经英, 邢小炜, 等. 慢性脑缺血大鼠脑组织IL-1β、IL-6、TNF-α及β-淀粉样蛋白1-42的表达研究[J]. 浙江医学, 2019, 41(5): 20-24. JIN Ping, WANG Jingying, XING Xiaowei, et al. Expression of IL-1β, IL-6, TNF-α andβ-amyloid 1-42 in brain of rat model of chronic cerebral ischemia[J]. Zhejiang Medical Journal, 2019, 41(5): 20-24.
[1] 刘芷瑞,郭文强,黄德章,王志刚. 左房黏液瘤致脑梗死及脑转移1例并文献复习[J]. 山东大学学报 (医学版), 2022, 60(10): 82-86.
[2] 闵傲雪,朱天瑞,张凤,王冉冉,李晓红. A151对糖氧剥夺和脂多糖诱导的BV-2细胞极化的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 1-9.
[3] 王余余,高丽,陈少华. 94例2型糖尿病患者急性脑梗死后认知障碍与甲状腺功能的关联性[J]. 山东大学学报 (医学版), 2020, 58(5): 56-61.
[4] 张云华,李杰. 颈动脉斑块内新生血管显影程度及血浆Lp-PLA2水平对急性脑梗死的临床诊断价值[J]. 山东大学学报(医学版), 2017, 55(3): 112-116.
[5] 王娜,陈乃耀. 脐带间充质干细胞对小胶质细胞增殖及活化的影响[J]. 山东大学学报(医学版), 2016, 54(10): 16-20.
[6] 李桂婷, 张蕊, 邹珊珊, 丁明. 氯胺酮对幼年小鼠空间学习记忆功能及海马脑区TSPO蛋白的影响[J]. 山东大学学报(医学版), 2015, 53(4): 55-60.
[7] 袁睿莉, 孙若鹏, 刘心洁. Caspase-1对小胶质细胞中NOD2介导的免疫耐受的调节[J]. 山东大学学报(医学版), 2015, 53(2): 34-38.
[8] 李梅, 孟庆慧, 蔡巧英, 徐雁, 范晓婷. 乙酰葛根素对Aβ25-35诱导BV-2小胶质细胞Caspase-3表达的影响[J]. 山东大学学报(医学版), 2015, 53(10): 32-36.
[9] 王建丽1,张涌2,朱媛媛3,李彬2,管益超1,耿婷4. 急性脑梗死患者阿司匹林抵抗与血小板miR126的相关性[J]. 山东大学学报(医学版), 2014, 52(5): 77-81.
[10] 亓珅,韩晓娟,王璐,张清华,杜怡峰. 海风藤提取物对激活的小胶质细胞IL-1β和TNF-α表达的影响[J]. 山东大学学报(医学版), 2013, 51(5): 11-14.
[11] 韩晓娟1,马学强2,杜怡峰1. 海风藤提取物对Aβ寡聚体激活的小胶质细胞释放炎性因子的抑制作用[J]. 山东大学学报(医学版), 2013, 51(5): 6-10.
[12] 张敏1,耿厚法2,孙琳2. 氢质子磁共振波谱技术对2型糖尿病合并急性脑梗死患者脑内代谢物变化的评估[J]. 山东大学学报(医学版), 2013, 51(11): 74-77.
[13] 张慧凤1,周家龙1,盛文化2,3. 2型糖尿病合并脑梗死患者血糖水平与PSGL-1的关系及其意义[J]. 山东大学学报(医学版), 2013, 51(10): 66-69.
[14] 文现宇,毛翘,崔春爱. 肉豆蔻提取物对IFN-γ干预的小胶质细胞BV2的调控作用[J]. 山东大学学报(医学版), 2011, 49(9): 21-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[2] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[3] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[5] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[6] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[7] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[8] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[9] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[10] 郭志华,赵大庆,邢园,王薇,梁乐平,杨静,赵倩倩. Ⅰ期端端吻合术治疗重度颈段气管狭窄临床分析[J]. 山东大学学报 (医学版), 2020, 1(7): 72 -76 .