山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (9): 59-66.doi: 10.6040/j.issn.1671-7554.0.2021.1383
邹品衡1,陈添果1,胡康2,李伟才3
ZOU Pinheng1, CHEN Tianguo1, HU Kang2, LI Weicai3
摘要: 目的 探究过表达miR-27a对急性脑梗死大鼠海马神经元损伤的影响及可能机制。 方法 将60只SD大鼠随机分为假手术组(Sham组)、模型组(Model组)、Agomir阴性对照组(Agomir-NC组)和miR-27a agomir组(Agomir组),每组15只。采用改良Longa线栓法构建急性脑梗死大鼠模型,于造模前1天和造模成功时,分别经侧脑室注射15 mg/kg的agomir-NC或miR-27a agomir。术后72 h,采用Zea-Longa评分法对大鼠神经功能缺损进行评分;采用氯化三苯基四氮唑染色法(TTC)测量大鼠脑梗死面积;原位缺口末端标记法(TUNEL)检测大鼠海马组织细胞凋亡水平;qRT-PCR法检测各组大鼠海马组织miR-27a的表达水平;流式细胞术(FCM)检测各组大鼠海马组织中Iba-1+/CD68+小胶质细胞所占百分比;酶联免疫吸附实验(ELISA)检测各组大鼠海马组织IL-1β、IL-6、TNF-α及iNOS的表达水平;Western blotting 检测大鼠海马组织中TLR4信号通路相关蛋白TLR4、MyD88、p-NF-κB p65及NF-κB p65表达情况。 结果 与Sham组相比,Model组大鼠海马组织细胞凋亡水平及Iba-1+/CD68+小胶质细胞水平均显著增加(均P<0.001),海马组织中IL-1β、IL-6、TNF-α水平和iNOS活性及TLR4、MyD88、p-NF-κB p65蛋白表达水平均显著升高(P<0.05),海马组织中miR-27a表达水平显著降低(P<0.001)。与Model组比,Agomir组大鼠神经功能缺损评分、脑梗死面积、海马组织细胞凋亡水平及Iba-1+/CD68+小胶质细胞水平均显著降低(均P<0.001),海马组织中IL-1β、IL-6、TNF-α水平和iNOS活性及TLR4、MyD88、p-NF-κB p65蛋白表达水平均显著下降(P<0.05),海马组织miR-27a表达水平显著上升(P<0.001)。 结论 过表达miR-27a通过抑制小胶质细胞M1型极化减轻急性脑梗死大鼠海马神经元损伤,其机制可能与抑制TLR4/NF-κB信号通路活化有关。
中图分类号:
[1] Tu WJ, Chao BH, Ma L, et al. Case-fatality, disability and recurrence rates after first-ever stroke: a study from bigdata observatory platform for stroke of China[J]. Brain Res Bull, 2021, 175: 130-135. doi: 10.1016/j.brainresbull.2021.07.020. [2] Krishnamurthi RV, Ikeda T, Feigin VL. Global, regional and country-specific burden of ischaemic stroke, intracerebral haemorrhage and subarachnoid haemorrhage: a systematic analysis of the global burden of disease study 2017[J]. Neuroepidemiology, 2020, 54(2): 171-179. [3] Voet S, Prinz M, van Loo G. Microglia in central nervous system inflammation and multiple sclerosis pathology[J]. Trends Mol Med, 2019, 25(2): 112-123. [4] 桑元伊, 邹小乙, 张瑶, 等. 小胶质细胞参与缺血性脑卒中的双重作用[J]. 国际免疫学杂志, 2019, 42(1): 73-77. SANG Yuanyi, ZOU Xiaoyi, ZHANG Yao, et al. Microglia and ischemic stroke: a double- edged sword[J]. International Journal of Immunology, 2019, 42(1): 73-77. [5] Chandan K, Gupta M, Sarwat M. Role of host and pathogen-derived microRNAs in immune regulation during infectious and inflammatory diseases[J]. Front Immunol, 2020, 10: 3081. doi: 10.3389/fimmu.2019.03081. [6] 方雪, 谭卫星, 何成, 等. MicroRNA调控小胶质细胞极化在神经系统疾病中作用和机制研究进展[J]. 生理学报, 2015, 67(1): 32-40. FANG Xue, TAN Weixing, HE Cheng, et al. MicroRNAs in microglia polarization and central nervous system diseases: mechanism and functions[J]. Acta Physiologica Sinica, 2015, 67(1): 32-40. [7] Wang Y, Wang D, Jin Z. miR-27a suppresses TLR4 ginduced renal ischemia reperfusion injury[J]. Mol Med Rep, 2019, 20(2): 967-976. [8] 范崇桂, 张燕平, 付国惠, 等. 槲皮素对急性脑梗死大鼠模型神经功能和氧化应激的影响[J]. 中华实验外科杂志, 2020, 37(4): 685-688. FAN Chonggui, ZHANG Yanping, FU Guohui, et al. Effects of quercetin on nerve function and oxidative stress in rat model of acute cerebral infarction[J]. Chinese Journal of Experimental Surgery, 2020, 37(4): 685-688. [9] 江海洋, 陈浩, 顾中华. 白藜芦醇保护缺血性脑卒中大鼠神经功能的作用机制研究[J]. 云南中医学院学报, 2018, 41(3): 23-26. JIANG Haiyang, CHEN Hao, GU Zhonghua. Protective effect mechanism of resveratrol on neurological function in rats with ischemic stroke[J]. Journal of Yunnan University of Traditional Chinese Medicine, 2018, 41(3): 23-26. [10] Chen L, Yang Q, Ding R, et al. Carotid thickness and atherosclerotic plaque stability, serum inflammation, serum MMP-2 and MMP-9 were associated with acute cerebral infarction[J]. Exp Ther Med, 2018, 16(6): 5253-5257. [11] 程朝辉, 张跃亮, 黄炜, 等. 急性脑梗死神经功能恢复与炎症因子的关系[J]. 海南医学, 2019, 30(19): 2456-2458. CHENG Zhaohui, ZHANG Yueliang, HUANG Wei, et al. Correlation of neurological function recovery with inflammatory factors in acute cerebral infarction patients[J]. Hainan Medical Journal, 2019, 30(19): 2456-2458. [12] 王颖芳, 陈艳琳, 王文娟. 中药miRNA研究进展[J]. 中国新药杂志, 2019, 28(4): 432-436. WANG Yingfang, CHEN Yanlin, WANG Wenjuan. Research progress of miRNAs in traditional Chinese medicines[J]. Chinese Journal of New Drugs, 2019, 28(4): 432-436. [13] Cazzanelli P, Wuertz-Kozak K. MicroRNAs in intervertebral disc degeneration, apoptosis, inflammation, and mechanobiology[J]. Int J Mol Sci, 2020, 21(10): 3601. doi: 10.3390/ijms21103601. [14] Wu L, Wang Q, Guo F, et al. Involvement of miR-27a-3p in diabetic nephropathy via affecting renal fibrosis, mitochondrial dysfunction, and endoplasmic reticulum stress[J]. J Cell Physiol, 2021, 236(2): 1454-1468. [15] Barisciano G, Colangelo T, Rosato V, et al. miR-27a is a master regulator of metabolic reprogramming and chemoresistance in colorectal cancer[J]. Br J Cancer, 2020, 122(9): 1354-1366. [16] Xiao Y, Li B, Liu J. miRNA-27a regulates arthritis via PPARγ in vivo and in vitro[J]. Mol Med Rep, 2018, 17(4): 5454-5462. [17] Xi T, Jin F, Zhu Y, et al. miR-27a-3p protects against blood-brain barrier disruption and brain injury after intracerebral hemorrhage by targeting endothelial aquaporin-11[J]. J Biol Chem, 2018, 293(52): 20041-20050. [18] Lv X, Yan J, Jiang J, et al. MicroRNA-27a-3p suppression of peroxisome proliferator-activated receptor-γ contributes to cognitive impairments resulting from sevoflurane treatment[J]. J Neurochem, 2017, 143(3): 306-319. [19] Cai Q, Wang T, Yang WJ, et al. Protective mechanisms of microRNA-27a against oxygen-glucose deprivation-induced injuries in hippocampal neurons[J]. Neural Regen Res, 2016, 11(8): 1285-1292. [20] Prinz M, Jung S, Priller J. Microglia biology: one century of evolving concepts[J]. Cell, 2019, 179(2): 292-311. [21] Du X, Xu Y, Chen S, et al. Inhibited CSF1R alleviates ischemia injury via inhibition of microglia M1 polarization and nlrp3 pathway[J]. Neural Plast, 2020, 2020: 8825954. doi: 10.1155/2020/8825954. [22] Lv YN, Ou-Yang AJ, Fu LS. MicroRNA-27a negatively modulates the inflammatory response in lipopolysaccharide-stimulated microglia by targeting TLR4 and IRAK4[J]. Cell Mol Neurobiol, 2017, 37(2): 195-210. [23] 于莉, 潘靖丹, 杜娈英, 等. TLR2和TLR4在抗病毒天然免疫应答中的新作用[J]. 病毒学报, 2018, 34(4): 570-578. YU Li, PAN Jingdan, DU Luanying, et al. Novel roles of TLR2 and TLR4 in innate immunity against virus infections[J]. Chinese Journal of Virology, 2018, 34(4): 570-578. [24] 单佳铃, 程虹毓, 文乐, 等. TLR/MyD88/NF-κB信号通路参与不同疾病作用机制研究进展[J]. 中国药理学通报, 2019, 35(4): 451-455. SHAN Jialing, CHENG Hongyu, WEN Le, et al. Advances in research of TLR/MyD88/NF-κB signaling pathway in different diseases[J]. Chinese Pharmacological Bulletin, 2019, 35(4): 451-455. [25] 金平, 王经英, 邢小炜, 等. 慢性脑缺血大鼠脑组织IL-1β、IL-6、TNF-α及β-淀粉样蛋白1-42的表达研究[J]. 浙江医学, 2019, 41(5): 20-24. JIN Ping, WANG Jingying, XING Xiaowei, et al. Expression of IL-1β, IL-6, TNF-α andβ-amyloid 1-42 in brain of rat model of chronic cerebral ischemia[J]. Zhejiang Medical Journal, 2019, 41(5): 20-24. |
[1] | 刘芷瑞,郭文强,黄德章,王志刚. 左房黏液瘤致脑梗死及脑转移1例并文献复习[J]. 山东大学学报 (医学版), 2022, 60(10): 82-86. |
[2] | 闵傲雪,朱天瑞,张凤,王冉冉,李晓红. A151对糖氧剥夺和脂多糖诱导的BV-2细胞极化的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 1-9. |
[3] | 王余余,高丽,陈少华. 94例2型糖尿病患者急性脑梗死后认知障碍与甲状腺功能的关联性[J]. 山东大学学报 (医学版), 2020, 58(5): 56-61. |
[4] | 张云华,李杰. 颈动脉斑块内新生血管显影程度及血浆Lp-PLA2水平对急性脑梗死的临床诊断价值[J]. 山东大学学报(医学版), 2017, 55(3): 112-116. |
[5] | 王娜,陈乃耀. 脐带间充质干细胞对小胶质细胞增殖及活化的影响[J]. 山东大学学报(医学版), 2016, 54(10): 16-20. |
[6] | 李桂婷, 张蕊, 邹珊珊, 丁明. 氯胺酮对幼年小鼠空间学习记忆功能及海马脑区TSPO蛋白的影响[J]. 山东大学学报(医学版), 2015, 53(4): 55-60. |
[7] | 袁睿莉, 孙若鹏, 刘心洁. Caspase-1对小胶质细胞中NOD2介导的免疫耐受的调节[J]. 山东大学学报(医学版), 2015, 53(2): 34-38. |
[8] | 李梅, 孟庆慧, 蔡巧英, 徐雁, 范晓婷. 乙酰葛根素对Aβ25-35诱导BV-2小胶质细胞Caspase-3表达的影响[J]. 山东大学学报(医学版), 2015, 53(10): 32-36. |
[9] | 王建丽1,张涌2,朱媛媛3,李彬2,管益超1,耿婷4. 急性脑梗死患者阿司匹林抵抗与血小板miR126的相关性[J]. 山东大学学报(医学版), 2014, 52(5): 77-81. |
[10] | 亓珅,韩晓娟,王璐,张清华,杜怡峰. 海风藤提取物对激活的小胶质细胞IL-1β和TNF-α表达的影响[J]. 山东大学学报(医学版), 2013, 51(5): 11-14. |
[11] | 韩晓娟1,马学强2,杜怡峰1. 海风藤提取物对Aβ寡聚体激活的小胶质细胞释放炎性因子的抑制作用[J]. 山东大学学报(医学版), 2013, 51(5): 6-10. |
[12] | 张敏1,耿厚法2,孙琳2. 氢质子磁共振波谱技术对2型糖尿病合并急性脑梗死患者脑内代谢物变化的评估[J]. 山东大学学报(医学版), 2013, 51(11): 74-77. |
[13] | 张慧凤1,周家龙1,盛文化2,3. 2型糖尿病合并脑梗死患者血糖水平与PSGL-1的关系及其意义[J]. 山东大学学报(医学版), 2013, 51(10): 66-69. |
[14] | 文现宇,毛翘,崔春爱. 肉豆蔻提取物对IFN-γ干预的小胶质细胞BV2的调控作用[J]. 山东大学学报(医学版), 2011, 49(9): 21-. |
|