您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (7): 89-97.doi: 10.6040/j.issn.1671-7554.0.2022.0069

• 临床医学 • 上一篇    下一篇

原发免疫性血小板减少症树突状细胞异常免疫反应机制

相宇娇,刘强,刘璐,石艳   

  1. 山东大学齐鲁医院血液科, 山东 济南 250012
  • 发布日期:2022-07-27
  • 通讯作者: 石艳. E-mail:shiyansjj@163.com
  • 基金资助:
    山东省自然科学基金(ZR2021MH188)

Mechanism of abnormal immune response of dendritic cells in immune thrombocytopenia

XIANG Yujiao, LIU Qiang, LIU Lu, SHI Yan   

  1. Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2022-07-27

摘要: 目的 探讨影响原发免疫性血小板减少症(ITP)患者树突状细胞功能异常的基因,为ITP治疗寻求新方法。 方法 随机选取ITP患者(ITP组)8例和同期入院体检健康者8例正常对照组为研究对象,分离外周单个核细胞并在体外诱导分化为单核细胞源性树突状细胞(moDCs),选取ITP组和正常对照组moDCs样本各3例,使用Illumina Hiseq平台进行转录组测序,并完成生物信息学分析。其他moDCs样本分为对照组、ITP组和ITP+雷帕霉素处理组,采用Western blotting法检测哺乳动物雷帕霉素靶蛋白复合体1(mTORC1)信号通路激活情况,采用流式细胞术检测moDCs表面分子表达,采用酶联免疫吸附(ELISA)法检测moDCs细胞因子分泌能力。 结果 差异性表达分析显示,与正常对照组相比,ITP组患者moDCs中有161个基因表达上调,320个基因表达下调,差异有统计学意义(P<0.05)。利用基因本体论(GO)和京都基因与基因组百科全书(KEGG)数据库对差异基因进行功能和分子通路注释,结果表明差异基因主要集中在T细胞分化、T细胞共刺激、T细胞活化等生物学过程和T细胞受体信号通路等信号途径。基因集富集分析(GSEA)显示,ITP组患者树突状细胞中mTORC1信号通路基因表达上调。进一步验证发现,ITP组患者moDCs中磷酸化哺乳动物雷帕霉素靶蛋白(mTOR)和mTORC1活化标志物磷酸化核糖体蛋白S6激酶(S6K)相对含量升高,同时ITP组患者moDCs共刺激分子CD80、CD86和促炎因子白介素6(IL-6)、白介素12(IL-12)的表达增加,而白介素10(IL-10)、转化生长因子-β(TGF-β)表达降低。使用mTORC1抑制剂雷帕霉素可以抑制moDCs共刺激分子CD80、CD86的表达和促炎因子IL-6、IL-12的分泌,并上调IL-10的表达,而对TGF-β的分泌无明显影响。 结论 ITP患者moDCs中mTORC1信号通路高度激活,使用mTORC1抑制剂雷帕霉素可以改善moDCs的免疫调节能力。因此,mTORC1信号通路可能是调节ITP患者moDCs功能异常的新靶点。

关键词: 原发免疫性血小板减少症, 树突状细胞, 转录组测序, mTORC1信号通路, 雷帕霉素

Abstract: Objective To explore the genes affecting the dysfunction of dendritic cells in patients with primary immune thrombocytopenia(ITP), and to seek a new therapeutic approach for ITP. Methods A total of 8 ITP patients and 8 healthy controls were enrolled. Peripheral mononuclear cells were isolated and induced to differentiate into monocyte derived dendritic cells(moDCs)in vitro. The moDCs samples from 3 ITP patients and 3 healthy controls were selected respectively, then transcriptome sequencing was performed using Illumina Hiseq platform, and bioinformatics analysis was completed. The remaining moDCs samples were divided into control group, ITP group and ITP+rapamycin group. The activation of mammalian rapamycin target protein complex 1(mTORC1)signal pathway was detected with Western blotting, the expressions of surface molecules were detected with flow cytometry, and the cytokine secretions were detected with enzyme-linked immunosorbent assay(ELISA). Results Differential gene analysis showed that compared with the healthy controls, ITP patients had 161 significantly up-regulated genes and 320 significantly down-regulated genes(P<0.05). The differential genes were mainly concentrated in biological processes such as T cell differentiation, T cell costimulation, T cell activation and T cell receptor signaling pathway. Gene set enrichment analysis(GSEA)showed that the activity of mTORC1 signal pathway in moDCs of ITP patients was enhanced. Further validation found that the expression of phosphorylated mTOR and mTORC1 activation marker phosphorylated ribosomal protein S6 kinase(S6K)in moDCs of ITP patients were increased. The expressions of moDCs costimulatory molecules CD80 and CD86, and pro-inflammatory factors interleukin(IL)-6 and IL-12 were increased in ITP patients, while the expressions of IL-10 and transforming growth factor-β(TGF-β)were decreased. The mTORC1 inhibitor rapamycin inhibited the expressions of CD80, CD86, IL-6 and IL-12. Rapamycin upregulated the expression of IL-10, but did not affect the expression of TGF-β. Conclusion The mTORC1 signaling pathway is highly activated in moDCs of ITP patients, and the use of rapamycin can improve the immunomodulatory ability of moDCs. Therefore, mTORC1 signaling pathway may be a new target for regulating moDCs dysfunction in ITP patients.

Key words: Primary immune thrombocytopenia, Dendritic cells, Transcriptome sequencing, mTORC1 signaling pathway, Rapamycin

中图分类号: 

  • R558
[1] Semple JW, Rebetz J, Maouia A, et al. An update on the pathophysiology of immune thrombocytopenia [J]. Curr Opin Hematol, 2020, 27(6): 423-429.
[2] 聂牧, 倪晓菲, 秦平, 等. 单次利妥昔单抗治疗原发免疫性血小板减少症的疗效及安全性[J]. 山东大学学报(医学版), 2018, 56(5): 81-84. NIE Mu, NI Xiaofei, QIN Ping, et al. Safety and efficacy of single dose rituximab in primary immune thrombocytopenia [J]. Journal of Shandong University(Health Sciences), 2018, 56(5): 81-84.
[3] Zhou H, Qiu JH, Wang T, et al. Interleukin 27 inhibits cytotoxic T-lymphocyte-mediated platelet destruction in primary immune thrombocytopenia [J]. Blood, 2014, 124(22): 3316-3319.
[4] 高长俊, 张晴, 韩洁, 等. T淋巴细胞亚群及血小板相关参数在儿童免疫性血小板减少症发病中的研究分析[J]. 湖南师范大学学报(医学版), 2017, 14(6): 161-164. GAO Changjun, ZHANG Qing, HAN Jie, et al. Analysis of T lymphocyte subsets and platelet parameters in children with immune thrombocytopenia [J]. Journal of Hunan Normal University(Medical Sciences), 2017, 14(6): 161-164.
[5] Semple JW. Immunobiology of T helper cells and antigen-presenting cells in autoimmune thrombocytopenic Purpura(ITP)[J]. Acta Paediatr Suppl, 1998, 424: 41-45. doi:10.1111/j.1651-2227.1998.tb01232.x.
[6] Audia S, Mahévas M, Samson M, et al. Pathogenesis of immune thrombocytopenia [J]. Autoimmun Rev, 2017, 16(6): 620-632.
[7] Zhang X, Wang YL, Zhang DL, et al. CD70-silenced dendritic cells induce immune tolerance in immune thrombocytopenia patients [J]. Br J Haematol, 2020, 191(3): 466-475.
[8] Xu LL, Fu HX, Zhang JM, et al. Impaired function of bone marrow mesenchymal stem cells from immune thrombocytopenia patients in inducing regulatory dendritic cell differentiation through the Notch-1/jagged-1 signaling pathway [J]. Stem Cells Dev, 2017, 26(22): 1648-1661.
[9] Suto T, Karonitsch T. The immunobiology of mTOR in autoimmunity[J]. J Autoimmun, 2020, 110: 102373. doi: 10.1016/j.jaut.2019.102373.
[10] Sharabi A, Tsokos GC. T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy [J]. Nat Rev Rheumatol, 2020, 16(2): 100-112.
[11] Benhamron S, Pattanayak SP, Berger M, et al. mTOR activation promotes plasma cell differentiation and bypasses XBP-1 for immunoglobulin secretion [J]. Mol Cell Biol, 2015, 35(1): 153-166.
[12] Liu M, Zhang JY, Pinder BD, et al. WAVE2 suppresses mTOR activation to maintain T cell homeostasis and prevent autoimmunity [J]. Science, 2021, 371(6536): 4544.
[13] Rodeghiero F, Stasi R, Gernsheimer T, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic Purpura of adults and children: report from an international working group [J]. Blood, 2009, 113(11): 2386-2393.
[14] Xiao MZ, Feng Y, Cao GM, et al. A novel MtHSP70-FPR1 fusion protein enhances cytotoxic T lymphocyte responses to cervical cancer cells by activating human monocyte-derived dendritic cells via the p38 MAPK signaling pathway [J]. Biochem Biophys Res Commun, 2018, 503(3): 2108-2116.
[15] Park B, Lee MY, Kim SD, et al. Activation of formyl peptide receptor 1 elicits therapeutic effects against collagen-induced arthritis [J]. J Cell Mol Med, 2021, 25(18): 8936-8946.
[16] Ford JW, McVicar DW. TREM and TREM-like receptors in inflammation and disease [J]. Curr Opin Immunol, 2009, 21(1): 38-46.
[17] Ebe H, Matsumoto I, Kawaguchi H, et al. Clinical and functional significance of STEAP4-splice variant in CD14+ monocytes in patients with rheumatoid arthritis [J]. Clin Exp Immunol, 2018, 191(3): 338-348.
[18] Zhao JJ, Liao Y, Miller-Little W, et al. STEAP4 expression in CNS resident cells promotes Th17 cell-induced autoimmune encephalomyelitis [J]. J Neuroinflammation, 2021, 18(1): 98.
[19] Machino-Ohtsuka T, Tajiri K, Kimura T, et al. Tenascin-C aggravates autoimmune myocarditis via dendritic cell activation and Th17 cell differentiation [J]. J Am Heart Assoc, 2014, 3(6): e001052.
[20] Tsokos GC, Rose NR. Immune cell signaling in autoimmune diseases [J]. Clin Immunol, 2017, 181: 1-8. doi:10.1016/j.clim.2017.05.015.
[21] Bussel J, Cooper N, Boccia R, et al. Immune thrombocytopenia [J]. Expert Rev Hematol, 2021, 14(11): 1013-1025.
[22] Zitvogel L, Terme M, Borg C, et al. Dendritic cell-NK cell cross-talk: regulation and physiopathology [J]. Curr Top Microbiol Immunol, 2006, 298: 157-174. doi:10.1007/3-540-27743-9_8.
[23] 廖晓艳, 高丰光. 树突状细胞交叉提呈的研究进展[J]. 中国免疫学杂志, 2021, 37(22): 2699-2703. LIAO Xiaoyan, GAO Fengguang. Research progress of dendritic cell cross presentation[J]. Chinese Journal of Immunology, 2021, 37(22): 2699-2703.
[24] Son SM, Park SJ, Stamatakou E, et al. Leucine regulates autophagy via acetylation of the mTORC1 component raptor [J]. Nat Commun, 2020, 11(1): 3148.
[25] 周宁, 陈聪, 王翔, 等. 雷帕霉素靶蛋白对树突状细胞分化和功能的调节[J]. 国际免疫学杂志, 2018, 41(4): 461-466. ZHOU Ning, CHEN Cong, WANG Xiang, et al. mTOR-mediated regulation of dendritic cell differentiation and function [J]. International Journal of Immunology, 2018, 41(4): 461-466.
[26] Jhanwar-Uniyal M, Wainwright JV, Mohan AL, et al. Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship [J]. Adv Biol Regul, 2019, 72: 51-62. doi: 10.1016/j.jbior.2019.03.003.
[27] Lim TS, Goh JK, Mortellaro A, et al. CD80 and CD86 differentially regulate mechanical interactions of T-cells with antigen-presenting dendritic cells and B-cells [J]. PLoS One, 2012, 7(9): e45185.
[28] Zhang XL, Ma J, Xu M, et al. Imbalance between CD205 and CD80/CD86 in dendritic cells in patients with immune thrombocytopenia [J]. Thromb Res, 2015, 135(2): 352-361.
[29] Lin Y, Zhou XM, Guo WJ, et al. RhIL-11 treatment normalized Th1/Th2 and T-bet/GATA-3 imbalance in in human immune thrombocytopenic Purpura(ITP)[J]. Int Immunopharmacol, 2016, 38: 40-44. doi: 10.1016/j.intimp.2016.05.002.
[30] Sesti-Costa R, Cervantes-Barragan L, Swiecki MK, et al. Leukemia inhibitory factor inhibits plasmacytoid dendritic cell function and development [J]. J Immunol, 2020, 204(8): 2257-2268.
[31] Wojas J, Pajtasz-Piasecka E. Dendritic cell-regulatory T-cell interaction [J]. Postepy Hig Med Dosw(Online), 2010, 64: 167-174.
[32] Wang XF, Li F, Li Y, et al. Decreased levels of immune-regulatory cytokines in patients with immune thrombocytopenia and long-lasting overexpression of these cytokines in the splenectomized patients [J]. J Leukoc Biol, 2021, 110(2): 335-341.
[33] Li L, Wan GW, Han B, et al. Echinacoside alleviated LPS-induced cell apoptosis and inflammation in rat intestine epithelial cells by inhibiting the mTOR/STAT3 pathway [J]. Biomed Pharmacother, 2018, 104: 622-628. doi: 10.1016/j.biopha.2018.05.072.
[1] 王福立,孙银萍,秦杰,荣建胜. DC-CIK细胞联合EGFR-TKI治疗35例老年晚期EGFR突变肺癌的效果[J]. 山东大学学报 (医学版), 2022, 60(7): 110-117.
[2] 章海容, 张小红, 王超群. 哺乳动物雷帕霉素靶蛋白通路调控ECA109细胞放疗敏感性的代谢组学[J]. 山东大学学报 (医学版), 2020, 58(1): 6-12.
[3] 周小青,李静,赵蕾,唐伟,杨熙,王红. 自然杀伤细胞通过树突状细胞调控衣原体肺部感染中Th17/Treg免疫应答平衡[J]. 山东大学学报 (医学版), 2019, 57(4): 15-19.
[4] 聂牧,倪晓菲,秦平,杨丹丹,李强,侯明,彭军,张晓琳,石艳. 单次利妥昔单抗治疗原发免疫性血小板减少症的疗效及安全性[J]. 山东大学学报 (医学版), 2018, 56(5): 81-84.
[5] 王波,薛江,刘爱虹,翟蕊蕊,王一彪. 雷帕霉素调控巨噬细胞表型改善肺动脉高压[J]. 山东大学学报 (医学版), 2018, 56(4): 51-57.
[6] 毛少为,卢国良,李亮,夏庆华. 丙戊酸钠增强二甲双胍对前列腺癌PC-3细胞的抗肿瘤作用[J]. 山东大学学报 (医学版), 2018, 56(3): 48-53.
[7] 杨晖,董蓉,薛慧,胡祖权,曾柱. 肝癌细胞对人成熟树突状细胞影响的基因芯片分析[J]. 山东大学学报(医学版), 2016, 54(1): 1-6.
[8] 张雪群,高卫,潘盼,高骏逸. PI3K/AKT及其相关因子在结肠癌中的表达[J]. 山东大学学报(医学版), 2016, 54(1): 52-57.
[9] 张敏, 王雪峰. 负载凋亡肿瘤细胞的树突状细胞对喉癌细胞的杀伤作用[J]. 山东大学学报(医学版), 2014, 52(7): 32-36.
[10] 庄泳, 李栋, 付金秋, 时庆, 鞠秀丽. 儿童B系急性淋巴细胞白血病树突状细胞的生物学特性[J]. 山东大学学报(医学版), 2014, 52(11): 60-64.
[11] 王通,刘玉光,张良文,王宏伟,李连陵,刘志国. 阻断EGFR和mTOR信号通路对C6胶质瘤及其干细胞的影响[J]. 山东大学学报(医学版), 2013, 51(5): 37-43.
[12] 陈朔1,王敏1,陈建2,卿莹1,林颖敏1,刘亮3,齐莹莹4. 雷帕霉素对莱菔硫烷诱导人结肠癌细胞UGT1A同工酶及CYP3A4表达的调控[J]. 山东大学学报(医学版), 2013, 51(11): 30-36.
[13] 邵娜,陈文强,李大庆,由倍安,安贵鹏,齐天军,徐福彪,胡晓波,杜金玲,杨敏,王晨,张运,陈玉国,李继福. 口服雷帕霉素抑制支架内再狭窄的血管内超声的实验研究[J]. 山东大学学报(医学版), 2011, 49(6): 59-63.
[14] 倪永梁,李青. 树突状细胞治疗联合膀胱灌注表柔比星在TURBT术后的应用研究[J]. 山东大学学报(医学版), 2011, 49(2): 114-118.
[15] 张萌,吴峻,童珊珊,王玮,苏楠,罗福全,鲁明军. AMPK经过mTOR途径对大鼠血管平滑肌细胞增殖的影响[J]. 山东大学学报(医学版), 2010, 48(6): 17-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[2] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[3] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[5] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[6] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[7] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[8] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[9] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[10] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .