您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (8): 23-29.doi: 10.6040/j.issn.1671-7554.0.2022.0011

• 基础医学 • 上一篇    下一篇

延龄草皂苷通过抑制TGF-β/Smad3与Wnt/β-catenin信号通路改善大鼠肺纤维化

张秉芬1,周胜红2,王哲3   

  1. 1.山东省中医药研究院中医临床科, 山东 济南 250014;2.山东省中医药研究院针药科, 山东 济南 250014;3.济南市市中区人民医院中医内科, 山东 济南 250002
  • 发布日期:2022-07-27
  • 通讯作者: 张秉芬. E-mail:foyjqn@163.com
  • 基金资助:
    山东省中医药科技发展计划项目(2017-145)

Trillium Saponins ameliorates pulmonary fibrosis in rats by inhibiting TGF-β/Smad3 and Wnt/β-catenin signaling pathways

ZHANG Bingfen1, ZHOU Shenghong2, WANG Zhe3   

  1. 1. Department of Traditional Chinese Medicine Clinical, Shandong Academy of Traditional Chinese Medicine, Jinan 250014, Shandong, China;
    2. Department of Acupuncture and Medicine, Shandong Academy of Traditional Chinese Medicine, Jinan 250014, Shandong, China;
    3. Department of Traditional Chinese Medicine, Jinan Shizhong Peoples Hospital, Jinan 250002, Shandong, China
  • Published:2022-07-27

摘要: 目的 探讨延龄草皂苷对肺间质纤维化大鼠的治疗作用及其可能机制。 方法 雄性SD大鼠50只,随机分为对照组,模型组,延龄草皂苷低、中、高剂量组[25 mg/(kg·d)、50 mg/(kg·d)和100 mg/(kg·d)],每组10只。除对照组外,其余各组采用气管插管注入伯莱霉素法(5 mg/kg)建立大鼠肺纤维化模型;次日开始连续给药28 d。处死大鼠后,取肺组织称重并计算肺系数;进行HE和Masson染色观察小鼠肺组织形态病理学变化;ELISA法检测大鼠白细胞介素-1β(IL-1β)、肿瘤坏死因子(TNF-α)、白细胞介素-6(IL-6)、丙二醛(MDA)和活性氧(ROS)的表达以及超氧化物歧化酶(SOD)的活性;Western blotting法检测大鼠肺组织中纤连蛋白(fibronectin)、胶原蛋白Ⅰ型(Collagen Ⅰ)、α-平滑肌肌动蛋白(α-SMA)、转化生长因子-β(TGF-β)、SMAD同源物3(Smad3)、Wnt3a、β-连环蛋白(β-catenin)和糖原合成酶激酶-3β(GSK-3β)的蛋白表达水平。 结果 与模型组比较,延龄草皂苷低、中、高剂量组的肺系数降低;大鼠肺组织炎性细胞浸润、胶原沉积和纤维化程度改善;大鼠IL-1β、TNF-α、IL-6、MDA和ROS的表达水平降低, SOD的活性升高,发挥抗炎、抗氧化作用;肺纤维化标志蛋白fibronectin,Collagen Ⅰ和α-SMA表达被抑制;大鼠肺组织TGF-β1、Smad3、Wnt3a、β-catenin和GSK-3β蛋白的表达水平降低,且治疗效果呈现剂量依赖性。 结论 延龄草皂苷可通过抗炎、抗氧化,抑制TGF-β/Smad3与Wnt/β-catenin信号通路激活,从而对肺纤维化产生保护作用。

关键词: 延龄草皂苷, 肺纤维化, 炎症, 转化生长因子-β/ SMAD同源物3信号通路, Wnt/β-catenin信号通路

Abstract: Objective To investigate the treatment and mechanism of Trillium Saponins in rats with pulmonary interstitial fibrosis. Methods Fifty male SD rats were divided into 5 groups, namely the control group, the model group, and the low, medium, and high Trillium Saponins treatment groups, with 10 in each group. Except the control group, the other groups were injected with bleomycin 5 mg/kg through tracheal intubation. A rat model of pulmonary fibrosis was established. The treatment group was given 25, 50 and 100 mg/(kg·d)Trillium Saponins by gavage the next day. After 28 days of treatment, the rats were sacrificed, and blood and lung tissues were taken. The lung tissue was weighed and the lung coefficient was calculated. HE staining and Masson staining were used to observe rat lung histopathology. The expression of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), malondialdehyde(MDA)and reactive oxygen species(ROS)and the activity of superoxide dismutase(SOD)were detected by ELISA kit. Western blotting experiment was employed to detect the protein expression levels of transforming growth factor-β(TGF-β)1, Smad3, Wnt3a, β-catenin, glycogen synthase kinase-3β(GSK-3β), fibronectin, Collagen Ⅰ and α-SMA in lung tissue. Results Compared with the model group, lung coefficient was decreased, inflammatory cell infiltration, collagen deposition and fibrocytosis was reduced, the expression of IL-1β, TNF-α, IL-6, MDA and ROS levels was decrease, the activity of SOD was increased, the expression of fibronectin, Collagen Ⅰ, α-SMA, TGFβ1, Smad3, Wnt3a, β-catenin and GSK-3β proteins was inhibited in lung tissue of low, medium, and high Trillium Saponins treatment groups. Conclusion Trillium has anti-inflammatory and anti-oxidant properties, and can inhibit the activation of TGF-β/Smad3 and Wnt/β-catenin signaling pathways to protect against pulmonary fibrosis.

Key words: Trillium saponin, Pulmonary interstitial fibrosis, Inflammation, Transforming growth factor-β/Smad3 signaling pathway, Wnt/β-catenin signaling pathway

中图分类号: 

  • R285.5
[1] Herrera J, Henke CA, Bitterman PB. Extracellular matrix as a driver of progressive fifibrosis[J]. J Clin Invest, 2018, 128(1): 45-53.
[2] 伍徐娴, 杨勤, 罗新华, 等. 芍化纤胶囊对肝细胞线粒体脂质过氧化的影响 [J].贵阳医学院学报, 2004, 29(5): 406-409. WU Xuxian, YANG Qin, LUO Xinhua, et al. Effects of Shaohuaxian capsules on lipid peroxidation of hepatocyte mitochondria [J]. Journal of Guiyang Medical College, 2004, 29(5): 406-409.
[3] Martinez FJ, Flaherty KR. Comprehensive and individualized patient care in idiopathic pulmonary fibrosis: refining approaches to diagnosis, prognosis, and treatment[J]. Chest, 2017, 151(5): 1173-1174.
[4] Li LC, Kan LD. Traditional Chinese medicine for pulmonary fibrosis therapy: progress and future prospects[J]. J Ethnopharmacol, 2017, 198: 45-63. doi: 10.1016/j.jep.2016.12.042.
[5] Suresh PS, Singh PP, Padwad YS, et al. Steroidal saponins from Trillium govanianum as α-amylase, α-glucosidase, and dipeptidyl peptidase IV inhibitory agents [J]. J Pharm Pharmacol, 2021, 73(4): 487-495.
[6] Wu AG, Teng JF, Wong VKW, et al. Novel steroidal saponin isolated from Trillium tschonoskii maxim. exhibits anti-oxidative effect via autophagy induction in cellular and Caenorhabditis elegans models [J]. Phytomedicine, 2019, 65: 153088. doi: 10.1016/j.phymed.2019.153088.
[7] Qian S, Tong S, Wu J, et al. Paris saponin VII extracted from Trillium tschonoskii induces autophagy and apoptosis in NSCLC cells [J]. J Ethnopharmacol, 2020, 248: 112304. doi: 10.1016/j.jep.2019.112304.
[8] 张忠立, 左月明, 蔡妙婷,等. 延龄草根及根茎的化学成分研究(II)[J]. 中草药, 2013, 44(20): 2808-2811. ZHANG Zhongli, ZUO Yueming, CAI Miaoting, et al. Study on chemical constituents of roots and rhizomes of Trillium tschonoskii(II)[J]. Chinese Traditional and Herbal Drugs, 2013, 44(20): 2808-2811.
[9] Yan T, Yu X, Sun X, et al. A new steroidal saponin, furotrilliumoside from Trillium tschonoskii inhibits lipopolysaccharide-induced inflammation in Raw264.7 cells by targeting PI3K/Akt, MARK and Nrf2/HO-1 pathways [J]. Fitoterapia, 2016, 115: 37-45. doi: 10.1016/j.fitote.2016.09.012.
[10] Teng JF, Qin DL, Mei QB, et al. Polyphyllin VI, a saponin from Trillium tschonoskii Maxim. induces apoptotic and autophagic cell death via the ROS triggered mTOR signaling pathway in non-small cell lung cancer [J]. Pharmacol Res, 2019, 147: 104396. doi: 10.1016/j.phrs.2019.104396.
[11] 熊秋杨, 辛光, 李世一, 等. 延龄草皂苷对小鼠急性胰腺炎和相关肺损伤的影响[J]. 华西药学杂志, 2019, 34(6): 587-591. XIONG Qiuyang, XIN Guang, LI Shiyi, et al. Effects of Trillium saponins on acute pancreatitis and related lung injury in mice [J]. West China JOurnal of Pharmaceutical Sciences, 2019, 34(6): 587-591.
[12] Yang F, Hou ZF, Zhu HY, et al. Catalpol protects against pulmonary fibrosis through inhibiting TGF-β1/Smad3 and Wnt/β-catenin signaling pathways[J]. Front Pharmacol, 2021, 11: 594139. doi: 10.3389/fphar.2020.594139.
[13] Szapiel SV, Elson NA, Fulmer JD, et al. Bleomycin-induced interstitial pulmonary disease in the nude, athymic mouse[J]. Am Rev Respir Dis, 1979, 120(4): 893-899.
[14] Ashcroft T, Simpson JM, Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale[J]. J Clin Pathol, 1988, 41(4): 467-470.
[15] Lopez AD, Avasarala S, Grewal S, et al. Differential role of the Fas/Fas ligand apoptotic pathway in inflammation and lung fibrosis associated with reovirus 1/L-induced bronchiolitis obliterans organizing pneumonia and acute respiratory distress syndrome[J]. J Immunol, 2009, 183(12): 8244-8257.
[16] Kala M, Shaikh MV, Nivsarkar M. Equilibrium between anti-oxidants and reactive oxygen species: a requisite for oocyte development and maturation[J]. Reprod Med Biol, 2016, 16(1): 28-35.
[17] He C, Larson-casey JL, Gu L, et al. Cu, Zn-superoxide dismutase-mediated redox regulation of Jumonji domain containing 3 modulates macrophage polarization and pulmonary fibrosis[J]. Am J Respir Cell Mol Biol, 2016, 55(1): 58-71.
[18] Teixeira KC, Soares FS, Rocha LGC, et al. Attenuation of bleomycin-induced lung injury and oxidative stress by N-acetylcysteine plus deferoxamine[J]. Pulm Pharmacol Ther, 2008, 21(2): 309-316.
[19] Yu WN, Sun LF, Yang H. Inhibitory effects of astragaloside IV on bleomycin-induced pulmonary fibrosis in rats via attenuation of oxidative stress and inflammation[J]. Inflammation, 2016, 39(5): 1835-1841.
[20] Park SJ, Kim TH, Lee K, et al. Kurarinone attenuates BLM-induced pulmonary fibrosis via inhibiting TGF-β signaling pathways [J]. Int J Mol Sci, 2021, 22(16): 8388.
[21] 王先丽, 任丹, 詹光杰, 等. 延龄草总皂苷对LPS诱导炎症大鼠的抗炎效果[J]. 基因组学与应用生物学, 2019, 38(8): 3697-3705. WANG Xianli, REN Dan, ZHAN Guangjie, et al. The anti-inflammatory effects of total Trillium tschonoskii Maxim Saponins on rats' inflammation induced by lipopolysaccharide [J]. Genomics and Applied Biology. 2019, 38(8): 3697-3705.
[22] 满红霞, 肖培云, 杨永寿, 等. 特发性肺纤维化的发病机制及药物治疗研究进展[J]. 中国现代应用药学, 2015, 32(8): 1024-1028. MAN Hongxia, XIAO Peiyun, YANG Yongshou, et al. Pathogenesis of idiopathic pulmonary fibrosis and its advances in cytokine treatment[J]. Chinese Journal of Modern Applied Pharmacy, 2015, 32(8):1024-1028.
[23] Fernandez IE, Eickelberg O. The impact of TGF-β on lung fibrosis: From targeting to biomarkers[J]. Proc Am Thorac Soc, 2012, 9(3): 111-116.
[24] Santibañez JF, Quintanilla M, Bernabeu C. TGF-β/TGF-β receptor system and its role in physiological and pathological conditions[J]. Clin Sci(Lond), 2011, 121(6): 233-251.
[25] Guo X, Ramirez A, Waddell DS, et al. Axin and GSK3-beta control Smad3 protein stability and modulate TGF-beta signaling[J]. Genes Dev, 2008, 22(1):106-120.
[26] Zhang M, Wang M, Tan X, et al. Smad3 prevents β-catenin degradation and facilitates β-catenin nuclear translocation in chondrocytes[J]. J Biol Chem, 2010, 285(12): 8703-8710.
[1] 郝跃伟 刘雪平 赵婷婷 郑敏 王一兵. 环氧化酶2基因多态性与动脉粥样硬化缺血性脑卒中的相关性[J]. 山东大学学报(医学版), 2209, 47(6): 95-98.
[2] 徐宁宇 王磊 郝恩魁 苏国海. STEMI患者急诊PCI前口服阿托伐他汀对炎症介质及左心室功能的影响[J]. 山东大学学报(医学版), 2209, 47(6): 69-72.
[3] 张凤,吴哲,徐俊,刘玉兰. 6例非酒精性脂肪性肝病小鼠肠道B细胞的变化[J]. 山东大学学报 (医学版), 2022, 60(9): 67-73.
[4] 李锐,石存现,于翠翠. 右美托咪定对30例体外循环患者肠道屏障损伤的影响[J]. 山东大学学报 (医学版), 2022, 60(7): 83-88.
[5] 刘岩,张曼,姜朝阳,卞姝,杜艾家,陈鹤. LncRNA-HOTAIR调控H3K27me3影响巨噬细胞迁移的机制[J]. 山东大学学报 (医学版), 2022, 60(6): 1-9.
[6] 邬雨洁,张明泉,纪永利,赵璐,王越,陈沙沙. 寒痉汤及其拆方对寒凝证高血压大鼠血清炎症因子、血管内皮功能及纤维化的影响[J]. 山东大学学报 (医学版), 2022, 60(6): 10-18.
[7] 张秀芳,李沛铮,张博涵,孙丛丛,刘艺鸣. 生长分化因子15在LPS诱导的帕金森病模型中的保护作用及机制[J]. 山东大学学报 (医学版), 2022, 60(5): 1-7.
[8] 孙继业,王紫欧,孙晓伟,李洪涛. 中药熏蒸联合体外冲击波对72例髋关节撞击综合征临床疗效、血清炎症因子水平的影响[J]. 山东大学学报 (医学版), 2022, 60(4): 76-81.
[9] 宋洛卿,周国钰,叶翔,卢梅,赵新静. 脑淀粉样血管病相关炎症长期误诊1例报道并文献复习[J]. 山东大学学报 (医学版), 2022, 60(4): 119-122.
[10] 张薇薇,华芳,梁超帅,褚苗苗,孙嘉忆,Frank Zaucke,辛玮. 促甲状腺激素通过抗炎蛋白CTRP3促进软骨细胞分化[J]. 山东大学学报 (医学版), 2022, 60(10): 1-8.
[11] 张召英,马春红. 胆汁酸在肝肠疾病中的免疫调节作用[J]. 山东大学学报 (医学版), 2021, 59(9): 30-36.
[12] 王凤霞,王涛,刘晓. 格氏乳球菌致急性结石性胆囊炎1例[J]. 山东大学学报 (医学版), 2021, 59(6): 122-124.
[13] 周溪,黄霂晗,任玉洁,邱洋. 新型冠状病毒感染与天然免疫及炎症反应[J]. 山东大学学报 (医学版), 2021, 59(5): 15-21.
[14] 闵傲雪,朱天瑞,张凤,王冉冉,李晓红. A151对糖氧剥夺和脂多糖诱导的BV-2细胞极化的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 1-9.
[15] 邢志群,李德军,赵宝,许春阳,纪洪生. 45例老年患者术后谵妄与乙酰胆碱酯酶活性及炎症指标关联性[J]. 山东大学学报 (医学版), 2021, 59(3): 92-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[3] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[4] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[5] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[6] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[7] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[8] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[9] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[10] 郭志华,赵大庆,邢园,王薇,梁乐平,杨静,赵倩倩. Ⅰ期端端吻合术治疗重度颈段气管狭窄临床分析[J]. 山东大学学报 (医学版), 2020, 1(7): 72 -76 .