山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (2): 80-87.doi: 10.6040/j.issn.1671-7554.0.2018.1165
• • 上一篇
阎慧丽1,魏慕筠2,颜磊3,赵跃然2,3
YAN Huili1, WEI Muyun2, YAN Lei3, ZHAO Yueran2,3
摘要: 目的 探讨FK506结合蛋白52(FKBP52)对人子宫内膜间质细胞(HESCs)增殖的影响,为薄型子宫内膜的治疗提供新的依据和靶点。 方法 分离并培养原代HESCs,分别感染过表达FKBP52的慢病毒和转染靶向沉默FKBP52的小干扰RNA(siRNA),CCK8法检测细胞增殖活性,平板克隆形成实验检测细胞克隆形成能力,流式细胞分析法检测细胞周期的变化,Western blotting法检测FKBP52及细胞周期相关蛋白表达水平。 结果 过表达FKBP52后,子宫内膜间质细胞的增殖活性增强(P<0.05),细胞克隆形成能力提高(P<0.01),细胞周期进程加快(P<0.01),细胞周期素依赖激酶4(CDK4)、细胞周期蛋白D1(CyclinD1)、细胞周期素依赖激酶2(CDK2)及细胞周期蛋白E1(CyclinE1)的蛋白表达水平均升高(P<0.05);干扰FKBP52后, 子宫内膜间质细胞的增殖能力减弱(P<0.05),细胞克隆形成能力降低(P<0.05),细胞周期进程受阻滞(P<0.05),CDK4、CyclinD1、CDK2、CyclinE1的表达均被抑制(P<0.05)。 结论 FKBP52可通过促进HESCs的细胞周期进程来促进HESCs的增殖,有可能作为薄型子宫内膜治疗的靶点。
中图分类号:
[1] Zhu H, Hou CC, Luo LF, et al. Endometrial stromal cells and decidualized stromal cells:origins, transformation and functions[J]. Gene, 2014, 551(1):1-14. [2] Salamonsen LA, Nie GY, Hannan NJ, et al. Society for Reproductive Biology Founders Lecture 2009. Preparing fertile soil:the importance of endometrial receptivity[J]. Reprod Fertil Dev, 2009, 21(7):923-934. [3] Kader MA, Abdelmeged A, Mahran A, et al. The usefulness of endometrial thickness, morphology and vasculature by 2D Doppler ultrasound in prediction of pregnancy in IVF/ICSI cycles[J]. The Egyptian Journal of Radiology and Nuclear Medicine, 2016, 47(1):341-346. [4] Zhang T, Li Z, Ren XL, et al. Endometrial thickness as a predictor of the reproductive outcomes in fresh and frozen embryo transfer cycles: a retrospective cohort study of 1512 IVF cycles with morphologically good-quality blastocyst[J]. Medicine(Baltimore), 2018, 97(4):e9689. doi:10.1097/MD.0000000000009689. [5] Riad ON, Hak AA. Assessment of endometrial receptivity using Doppler ultrasonography in infertile women undergoing intrauterine insemination[J]. Gynecol Endocrinol, 2014, 30(1):70-73. [6] Aydin T, Kara M, Nurettin T. Relationship between endometrial thickness and in vitro fertilization-intracytoplasmic sperm injection outcome[J]. Int J Fertil Steril, 2013, 7(1):29-34. [7] Liu SM, Zhou YZ, Wang HB, et al. Factors associated with effectiveness of treatment and reproductive outcomes in patients with thin endometrium undergoing estrogen treatment[J]. Chin Med J, 2015, 128(23):3173-3177. [8] Eftekhar M, Tabibnejad N, Tabatabaie AA. The thin endometrium in assisted reproductive technology:an ongoing challenge[J]. Middle East Fertility Society Journal, 2018, 23(1):1-7. [9] Bedaiwy MA, Abdelaleem MA, Hussein M, et al. Hormonal, follicular and endometrial dynamics in letrozole-treated versus natural cycles in patients undergoing controlled ovarian stimulation[J]. Reprod Biol Endocrinol, 2011, 9:83. doi:10.1186/1477-7827-9-83. [10] Young SL. Oestrogen and progesterone action on endometrium:a translational approach to understanding endometrial receptivity[J]. Reprod Biomed Online, 2013, 27(5):497-505. [11] 俞凌, 王淑芳, 叶明侠, 等. 薄型子宫内膜治疗新进展[J]. 国际生殖健康/计划生育杂志, 2016, 35(2):165-169. YU Ling, WANG Shufang, YE Mingxia, et al. Treatment of thin endometrium: a brief review[J]. Journal of International Reproductive Health/Family Planning, 2016, 35(2):165-169. [12] Guy NC, Garcia YA, Cox MB. Therapeutic targeting of the FKBP52 co-chaperone in steroid hormone receptor-regulated physiology and disease[J]. Curr Mol Pharmacol, 2015, 9(2):109-125. [13] Hong CQ, Li T, Zhang F, et al. Elevated FKBP52 expression indicates a poor outcome in patients with breast cancer[J]. Oncol Lett, 2017, 14(5):5379-5385. [14] Daikoku T, Tranguch S, Friedman DB, et al. Proteomic analysis identifies immunophilin FK506 binding protein 4(FKBP52)as a downstream target of Hoxa10 in the periimplantation mouse uterus[J]. Mol Endocrinol, 2005, 19(3):683-697. [15] Chen JC, Roan NR. Isolation and culture of human endometrial epithelial cells and stromal fibroblasts[J]. Bio Protoc, 2015, 5(20). pii:e1623. [16] Matthews CJ, Redfern CP, Hirst BH, et al. Characterization of human purified epithelial and stromal cells from endometrium and endometriosis in tissue culture[J]. Fertil Steril, 1992, 57(5):990-997. [17] Kim SM, Kim JS. A review of mechanisms of implantation[J]. Dev Reprod, 2017, 21(4):351-359. [18] Wang W, Taylor RN, Bagchi IC, et al. Regulation of human endometrial stromal proliferation and differentiation by C/EBPβ involves cyclin E-cdk2 and STAT3[J]. Mol Endocrinol, 2012, 26(12):2016-2030. [19] Bhowal A, Majumder S, Ghosh S, et al. Pathway-based expression profiling of benign prostatic hyperplasia and prostate cancer delineates an immunophilin molecule associated with cancer progression[J]. Sci Rep, 2017, 7(1):9763. doi:10.1038/s41598-017-10068-9. [20] Wolf E, Lin CY, Eilers M, et al. Taming of the beast:shaping Myc-dependent amplification[J]. Trends Cell Biol, 2015, 25(4):241-248. [21] Zhang DD, Qi JP, Liu R, et al. c-Myc plays a key role in TADs-induced apoptosis and cell cycle arrest in human hepatocellular carcinoma cells[J]. Am J Cancer Res, 2015, 5(3):1076-1088. [22] Storer Samaniego C, Suh JH, Chattopadhyay A, et al. The FKBP52 cochaperone acts in synergy with β-catenin to potentiate androgen receptor signaling[J]. PLoS One, 2015, 10(7):e0134015. doi:10.1371/journal.pone.0134015. [23] Kumar P, Mark PJ, Ward BK, et al. Estradiol-regulated expression of the immunophilins cyclophilin 40 and FKBP52 in MCF-7 breast cancer cells[J]. Biochem Biophys Res Commun, 2001, 284(1):219-225. [24] Jeong YY, Her J, Oh SY, et al. Hsp90-binding immunophilin FKBP52 modulates telomerase activity by promoting the cytoplasmic retrotransport of hTERT[J]. Biochem J, 2016, 473(20):3517-3532. [25] Fu XJ, Li HX, Yang K, et al. The important tumor suppressor role of PER1 in regulating the cyclin-CDK-CKI network in SCC15 human oral squamous cell carcinoma cells[J]. Onco Targets Ther, 2016, 9:2237-2245. doi:10.2147/OTT.S100952. [26] Havens CG, Ho A, Yoshioka N, et al. Regulation of late G1/S phase transition and APC Cdh1 by reactive oxygen species[J]. Mol Cell Biol, 2006, 26(12):4701-4711. [27] 陈希彦, 王琪, 顾伟亭, 等. 干扰TAZ基因对舌鳞癌细胞CAL27增殖凋亡的影响及其机制[J]. 山东大学学报(医学版), 2018, 56(10):79-85. CHEN Xiyan, WANG Qi, GU Weiting, et al. Effects of TAZ knockdown on the proliferation and apoptosis of TSCC cell line CAL27 and the molecular mechanism[J]. Journal of Shandong University(Health Science), 2018, 56(10):79-85. [28] Satoh T, Kaida D. Upregulation of p27 cyclin-dependent kinase inhibitor and a C-terminus truncated form of p27 contributes to G1 phase arrest[J]. Sci Rep, 2016, 6:27829. doi:10.1038/srep27829. |
[1] | 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58. |
[2] | 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71. |
[3] | 王正阳,夏艳,师凯旋,陶琨,王小杰. 曲美替尼在卵巢癌中对PAX8的表达作用[J]. 山东大学学报 (医学版), 2021, 59(10): 23-29. |
[4] | 杜甜甜,李娟,赵颖慧,段伟丽,王景,王允山,杜鲁涛,王传新. 长链非编码RNA LINC02474在结直肠癌中的表达特征及对细胞增殖的影响[J]. 山东大学学报 (医学版), 2021, 59(10): 57-67. |
[5] | 李文清,叶兰,姜玉华. CDK7抑制剂THZ1对人胶质瘤细胞U251放疗的增敏性[J]. 山东大学学报 (医学版), 2021, 59(1): 8-13. |
[6] | 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32-37. |
[7] | 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14. |
[8] | 李晓梅,梁婷,张超,曹慧,侯桂华. 抑制T细胞CDK9对TLR5靶向监测同种异体移植排斥的影响[J]. 山东大学学报 (医学版), 2018, 56(7): 1-6. |
[9] | 李孝峰,杜晓益,刘海南,刘承,范医东. 小檗碱对人肾细胞癌细胞增殖、凋亡、DNA断裂及损伤修复的影响[J]. 山东大学学报 (医学版), 2018, 56(3): 54-59. |
[10] | 黄平,张坤,李芳,黄国宝,延冰,肖东杰,汪运山,刘华. 脐带和脂肪源性间充质干细胞生物学特性比较[J]. 山东大学学报 (医学版), 2018, 56(3): 72-78. |
[11] | 李杰,何东,张睿,杨帆,冯少滨,杨依航,辛涛. 核转运蛋白α2在胶质瘤中的表达及对其生物学行为的影响[J]. 山东大学学报 (医学版), 2018, 56(12): 47-54. |
[12] | 陈希彦,王琪,顾伟亭,文勇. 干扰TAZ基因对舌鳞癌细胞CAL27增殖凋亡的影响及其机制[J]. 山东大学学报 (医学版), 2018, 56(10): 79-85. |
[13] | 王永,姜晨,周士英,杨晓玫. IQ结构域GTP酶激活蛋白3表达对宫颈癌细胞增殖和转移的影响[J]. 山东大学学报 (医学版), 2018, 56(10): 103-109. |
[14] | 杨飞龙,周尊林,任巨超,闫磊,刘海南, 张温花,俞能旺,李大伟,徐忠华. 肝癌衍生生长因子对前列腺癌细胞增殖的影响及其机制[J]. 山东大学学报 (医学版), 2018, 56(1): 62-69. |
[15] | 史培堃,曾贝妮,吴伟芳,胡晓燕,马天加,周亚滨. Keap1在肾细胞癌中的表达及其作用[J]. 山东大学学报(医学版), 2017, 55(3): 94-99. |
|