您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (8): 24-31.doi: 10.6040/j.issn.1671-7554.0.2021.0794

• 生殖免疫的基础与临床研究进展专题 • 上一篇    下一篇

母胎免疫调节机制的研究进展

乔宠*(),王婷婷   

  1. 中国医科大学附属盛京医院妇产科,辽宁 沈阳 110004
  • 收稿日期:2021-07-09 出版日期:2021-08-10 发布日期:2021-09-16
  • 通讯作者: 乔宠 E-mail:qiaochong2002@163.com
  • 作者简介:乔宠,医学博士,教授,博士研究生导师。现任中国医科大学附属盛京医院产科主任兼第六产科病房主任。主要研究方向:生殖免疫机制的研究、复发性流产的诊治、子痫前期的病因及防治、滋养细胞浸润的调控机制。主要学术任职:美国生殖研究学会会员、国际早产联盟澳亚分会(PREBIC-AA)委员及秘书、辽宁省免疫学会妊娠免疫分会主任委员、辽宁省围产医学会青年委员会主任委员、辽宁省医学会围产医学会分会第六届委员会副主任委员、辽宁省细胞生物学学会孕产期母儿心脏多学科诊治专业委员会副主任委员、辽宁省预防医学会第四届性医学专业委员会副主任委员、中国优生科学协会常务理事、世中联围产医学专业委员会常务理事、世界中西医结合联合会生殖医学专业委员会理事、中华医学会围产医学分会青年委员、全国妊娠期高血压疾病学组青年委员、辽宁省医学会妇产科学会委员、辽宁省中西医结合学会生殖医学专业委员会常务委员、妇幼健康研究会母胎医学专业委员会委员。临床上擅长复发性流产、多次试管婴儿失败、宫颈环扎和妊娠期高血压疾病的诊治及预防。被授予中国妇幼健康研究会——生殖免疫专委会中国复发性流产诊治精英联盟成员。科研成果:申请国内发明专利两项。迄今共发表专业论文100余篇,其中SCI收录20余篇,影响因子最高15.28。参编及参译专业书籍20余部。共承担及参与国家自然科学基金、国家卫生计生委公益性卫生行业科研专项基金、国家十一五攻关项目、省市各类基金18项,其中作为第一负责人承担科研课题12项(其中国家重点专项1项、国家自然基金面上项目2项、省部级科研课题7项,市级课题1项,院内课题1项),获资助总金额626万元
  • 基金资助:
    国家重点研发计划(2016YFC1000404);国家自然科学基金面上项目(81370735);国家自然科学基金面上项目(81771610);盛京自由研究者基金(201706);辽宁省特聘教授(2017);沈阳市科技计划项目(20-205-4-004)

Research progress of maternal-fetal immunomodulatory mechanism

Chong QIAO*(),Tingting WANG   

  1. Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, China
  • Received:2021-07-09 Online:2021-08-10 Published:2021-09-16
  • Contact: Chong QIAO E-mail:qiaochong2002@163.com

摘要:

母胎界面在对同种半异体胎儿产生耐受性的同时保持对感染的防御,在生殖学和免疫学引起了广泛关注。母胎界面是正常妊娠建立和维持的关键部位,主要由滋养细胞、蜕膜免疫细胞、蜕膜基质细胞共同组成,对母胎界面免疫机制的深入研究有助于进一步阐明人类妊娠并发症的发病机制。综述总结了近年来母胎免疫的研究成果,围绕母胎界面的关键细胞功能、细胞及细胞因子间相互作用进行说明,旨在此基础上阐述母胎免疫调节机制。

关键词: 母胎界面, 滋养细胞, 蜕膜免疫细胞

Abstract:

The maternal-fetal interface develops tolerance to the homohemiallogeneic fetus while maintaining defense against infection, which has aroused great concern in reproduction and immunology. The maternal-fetal interface is a key site for the establishment and maintenance of normal pregnancy, which is composed of trophoblast cells, decidual immune cells and decidual stromal cells. Studies on the immune mechanism of the maternal-fetal interface help to elucidate the pathogenesis of many human pregnancy complications. In this paper, the research achievements of maternal-fetal immunity in recent years are summarized, and the key cellular functions of maternal-fetal interface and the interactions between cells and cytokines are described, aiming to elaborate the mechanism of maternal-fetal immune regulation.

Key words: Maternal-fetal interface, Trophoblast cell, Decidual immune cells

中图分类号: 

  • R714.03
1 Beaman KD , Jaiswal MK , Katara GK , et al. Pregnancy is a model for tumors, not transplantation[J]. Am J Reprod Immunol, 2016, 76 (1): 3- 7.
doi: 10.1111/aji.12524
2 Mor G , Aldo P , Alvero AB . The unique immunological and microbial aspects of pregnancy[J]. Nat Rev Immunol, 2017, 17 (8): 469- 482.
doi: 10.1038/nri.2017.64
3 Schumacher A , Sharkey DJ , Robertson SA , et al. Immune cells at the fetomaternal Interface: how the microenvironment modulates immune cells to foster fetal development[J]. J Immunol, 2018, 201 (2): 325- 334.
doi: 10.4049/jimmunol.1800058
4 Moffett A , Loke C . Immunology of placentation in eutherian mammals[J]. Nat Rev Immunol, 2006, 6 (8): 584- 594.
doi: 10.1038/nri1897
5 Ferreira LM , Meissner TB , Mikkelsen TS , et al. A distant trophoblast-specific enhancer controls HLA-G expression at the maternal-fetal interface[J]. Proc Natl Acad Sci U S A, 2016, 113 (19): 5364- 5369.
doi: 10.1073/pnas.1602886113
6 Gregori S , Amodio G , Quattrone F , et al. HLA-G orchestrates the early interaction of human trophoblasts with the maternal niche[J]. Front Immunol, 2015, 6, 128.
doi: 10.3389/fimmu.2015.00128
7 Ferreira LMR , Meissner TB , Tilburgs T , et al. HLA-G: at the interface of maternal-fetal tolerance[J]. Trends Immunol, 2017, 38 (4): 272- 286.
doi: 10.1016/j.it.2017.01.009
8 Xu X , Zhou Y , Wei H . Roles of HLA-G in the maternal-fetal Immune microenvironment[J]. Front Immunol, 2020, 11, 592010.
doi: 10.3389/fimmu.2020.592010
9 陈绣瑛, 黄丽丽. 人类白细胞抗原-G与母胎免疫耐受的关系[J]. 中国计划生育杂志, 2021, 29 (6): 1302- 1305.
CHEN Xiuying , HUANG Lili . Association human leukocyte antigen-G and maternal-ketal immunotolerance[J]. Chinese Journal of Family Planning, 2021, 29 (6): 1302- 1305.
10 Marcenaro E , Pesce S , Sivori S , et al. KIR2DS1-dependent acquisition of CCR7 and migratory properties by human NK cells interacting with allogeneic HLA-C2+ DCs or T-cell blasts[J]. Blood, 2013, 121 (17): 3396- 3401.
doi: 10.1182/blood-2012-09-458752
11 Tilburgs T , Crespo AC , van der Zwan A , et al. Human HLA-G+ extravillous trophoblasts: immune-activating cells that interact with decidual leukocytes[J]. Proc Natl Acad Sci U S A, 2015, 112 (23): 7219- 7224.
doi: 10.1073/pnas.1507977112
12 Papúchová H , Meissner TB , Li Q , et al. The dual role of HLA-C in tolerance and immunity at the maternal-fetal interface[J]. Front Immunol, 2019, 10, 2730.
doi: 10.3389/fimmu.2019.02730
13 Bulmer JN , Williams PJ , Lash GE . Immune cells in the placental bed[J]. Int J Dev Biol, 2010, 54 (2-3): 281- 294.
doi: 10.1387/ijdb.082763jb
14 Yang F , Zheng Q , Jin L . Dynamic function and composition changes of immune cells during normal and pathological pregnancy at the maternal-fetal interface[J]. Front Immunol, 2019, 10, 2317.
doi: 10.3389/fimmu.2019.02317
15 Le Bouteiller P , Bensussan A . Up-and-down immunity of pregnancy in humans[J]. F1000Res, 2017, 6, 1216.
doi: 10.12688/f1000research.11690.1
16 Carlino C , Stabile H , Morrone S , et al. Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy[J]. Blood, 2008, 111 (6): 3108- 3115.
doi: 10.1182/blood-2007-08-105965
17 Vacca P , Vitale C , Montaldo E , et al. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells[J]. Proc Natl Acad Sci U S A, 2011, 108 (6): 2402- 2407.
doi: 10.1073/pnas.1016257108
18 Manaster I , Mizrahi S , Goldman-Wohl D , et al. Endometrial NK cells are special immature cells that await pregnancy[J]. J Immunol, 2008, 181 (3): 1869- 1876.
doi: 10.4049/jimmunol.181.3.1869
19 Ivarsson MA , Stiglund N , Marquardt N , et al. Composition and dynamics of the uterine NK cell KIR repertoire in menstrual blood[J]. Mucosal Immunol, 2017, 10 (2): 322- 331.
doi: 10.1038/mi.2016.50
20 Williams PJ , Searle RF , Robson SC , et al. Decidual leucocyte populations in early to late gestation normal human pregnancy[J]. J Reprod Immunol, 2009, 82 (1): 24- 31.
doi: 10.1016/j.jri.2009.08.001
21 金妮, 芦洁, 王明, 等. 蜕膜自然杀伤细胞对孕早期母胎界面免疫微环境的影响[J]. 中国计划生育和妇产科, 2021, 13 (7): 42- 45.
doi: 10.3969/j.issn.1674-4020.2021.07.14
22 Gaynor LM , Colucci F . Uterine natural killer cells: functional distinctions and influence on pregnancy in humans and mice[J]. Front Immunol, 2017, 8, 467.
doi: 10.3389/fimmu.2017.00467
23 Hazan AD , Smith SD , Jones RL , et al. Vascular-leukocyte interactions: mechanisms of human decidual spiral artery remodeling in vitro[J]. Am J Pathol, 2010, 177 (2): 1017- 1030.
doi: 10.2353/ajpath.2010.091105
24 Hanna J , Goldman-Wohl D , Hamani Y , et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface[J]. Nat Med, 2006, 12 (9): 1065- 1074.
doi: 10.1038/nm1452
25 Manaster I , Mandelboim O . The unique properties of human NK cells in the uterine mucosa[J]. Placenta, 2008, 29 (Suppl A): 60- 66.
26 Vento-Tormo R , Efremova M , Botting RA , et al. Single-cell reconstruction of the early maternal-fetal interface in humans[J]. Nature, 2018, 563 (7731): 347- 353.
doi: 10.1038/s41586-018-0698-6
27 Fu B , Zhou Y , Ni X , et al. Natural killer cells promote fetal development through the secretion of growth-promoting factors[J]. Immunity, 2017, 47 (6): 1100- 1113.
doi: 10.1016/j.immuni.2017.11.018
28 Tilburgs T , Evans JH , Crespo AC , et al. The HLA-G cycle provides for both NK tolerance and immunity at the maternal-fetal interface[J]. Proc Natl Acad Sci U S A, 2015, 112 (43): 13312- 13317.
doi: 10.1073/pnas.1517724112
29 Li YH , Zhou WH , Tao Y , et al. The Galectin-9/Tim-3 pathway is involved in the regulation of NK cell function at the maternal-fetal interface in early pregnancy[J]. Cell Mol Immunol, 2016, 13 (1): 73- 81.
doi: 10.1038/cmi.2014.126
30 Dempsey LA . Tim-3 promotes maternal tolerance[J]. Nat Immunol, 2017, 18 (11): 1189.
31 Liu S , Diao L , Huang C , et al. The role of decidual immune cells on human pregnancy[J]. J Reprod Immunol, 2017, 124, 44- 53.
doi: 10.1016/j.jri.2017.10.045
32 Zhou D , Huang C , Lin Z , et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways[J]. Cell Signal, 2014, 26 (2): 192- 197.
doi: 10.1016/j.cellsig.2013.11.004
33 Jiang X , Du MR , Li M , et al. Three macrophage subsets are identified in the uterus during early human pregnancy[J]. Cell Mol Immunol, 2018, 15 (12): 1027- 1037.
doi: 10.1038/s41423-018-0008-0
34 Ning F , Liu H , Lash GE . The role of decidual macrophages during normal and pathological pregnancy[J]. Am J Reprod Immunol, 2016, 75 (3): 298- 309.
doi: 10.1111/aji.12477
35 Abrahams VM , Kim YM , Straszewski SL , et al. Macrophages and apoptotic cell clearance during pregnancy[J]. Am J Reprod Immunol, 2004, 51 (4): 275- 282.
doi: 10.1111/j.1600-0897.2004.00156.x
36 Grozdics E , Berta L , Bajnok A , et al. B7 costimulation and intracellular indoleamine-2, 3-dioxygenase (IDO) expression in peripheral blood of healthy pregnant and non-pregnant women[J]. BMC Pregnancy Childbirth, 2014, 14, 306.
doi: 10.1186/1471-2393-14-306
37 Sayama S , Nagamatsu T , Schust DJ , et al. Human decidual macrophages suppress IFN-gamma production by T cells through costimulatory B7-H1: PD-1 signaling in early pregnancy[J]. J Reprod Immunol, 2013, 100 (2): 109- 117.
doi: 10.1016/j.jri.2013.08.001
38 蒋梦琪, 王雁. 协同共刺激分子B7-H4与母胎免疫[J]. 中国生育健康杂志, 2019, 30 (4): 398- 400.
doi: 10.3969/j.issn.1671-878X.2019.04.025
39 Nancy P , Erlebacher A . T cell behavior at the maternal-fetal interface[J]. Int J Dev Biol, 2014, 58 (2-4): 189- 198.
40 Tsuda S , Nakashima A , Shima T , et al. New paradigm in the role of regulatory T cells during pregnancy[J]. Front Immunol, 2019, 10, 573.
doi: 10.3389/fimmu.2019.00573
41 Wang SC , Li YH , Piao HL , et al. PD-1 and Tim-3 pathways are associated with regulatory CD8+ T-cell function in decidua and maintenance of normal pregnancy[J]. Cell Death Dis, 2015, 6, e1738.
doi: 10.1038/cddis.2015.112
42 van Egmond A , van der Keur C , Swings GM , et al. The possible role of virus-specific CD8(+) memory T cells in decidual tissue[J]. J Reprod Immunol, 2016, 113, 1- 8.
doi: 10.1016/j.jri.2015.09.073
43 Zhu JF , Yamane H , Paul WE . Differentiation of effector CD4 T cell populations (*)[J]. Annu Rev Immunol, 2010, 28, 445- 489.
doi: 10.1146/annurev-immunol-030409-101212
44 Powell RM , Lissauer D , Tamblyn J , et al. Decidual T Cells exhibit a highly differentiated phenotype and pemo- nstrate potential fetal specificity and a strong transcriptional response to IFN[J]. J Immunol, 2017, 199 (10): 3406- 3417.
doi: 10.4049/jimmunol.1700114
45 Hirahara K , Nakayama T . CD4+T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm[J]. Int Immunol, 2016, 28 (4): 163- 171.
doi: 10.1093/intimm/dxw006
46 Wang WJ , Sung N , Gilman-Sachs A , et al. T helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells[J]. Front Immunol, 2020, 11, 2025.
doi: 10.3389/fimmu.2020.02025
47 Taylor EB , Sasser JM . Natural killer cells and T lymphocytes in pregnancy and pre-eclampsia[J]. Clin Sci (Lond), 2017, 131 (24): 2911- 2917.
doi: 10.1042/CS20171070
48 Campbell DJ , Koch MA . Phenotypical and functional specialization of FOXP3+ regulatory T cells[J]. Nat Rev Immunol, 2011, 11 (2): 119- 130.
doi: 10.1038/nri2916
49 Thornton AM , Korty PE , Tran DQ , et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells[J]. J Immunol, 2010, 184 (7): 3433- 3441.
doi: 10.4049/jimmunol.0904028
50 Inada K , Shima T , Ito M , et al. Helios-positive functional regulatory T cells are decreased in decidua of miscarriage cases with normal fetal chromosomal content[J]. J Reprod Immunol, 2015, 107, 10- 19.
doi: 10.1016/j.jri.2014.09.053
51 Chang RQ , Li DJ , Li MQ . The role of indoleamine-2, 3-dioxygenase in normal and pathological pregnancies[J]. Am J Reprod Immunol, 2018, 79 (4): e12786.
doi: 10.1111/aji.12786
52 Miwa N , Hayakawa S , Miyazaki S , et al. IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-gamma increase in normal pregnancy but decrease in spontaneous abortion[J]. Mol Hum Reprod, 2005, 11 (12): 865- 870.
doi: 10.1093/molehr/gah246
53 Wang WJ , Liu FJ , Zhang X , et al. Periodic elevation of regulatory T cells on the day of embryo transfer is associated with better in vitro fertilization outcome[J]. J Reprod Immunol, 2017, 119, 49- 53.
doi: 10.1016/j.jri.2017.01.002
54 孙兰, 康晓敏, 武泽. CD4+T细胞在孕早期母胎界面免疫耐受中的研究进展[J]. 中国免疫学杂志, 2021, 37 (6): 754- 763.
doi: 10.3969/j.issn.1000-484X.2021.06.021
SUN Lan , KANG Xiaomin , WU Ze . Research progress of CD4+T cells in maternal-fetal interface immune tolerance in early pregnancy[J]. Chinese Journal of Immunology, 2021, 37 (6): 754- 763.
doi: 10.3969/j.issn.1000-484X.2021.06.021
55 栾晓蕊, 李卫平. 滤泡性辅助T细胞亚型与原因不明复发性流产的关系研究[J]. 上海交通大学学报(医学版), 2017, 37 (10): 1346- 1349.
LUAN Xiaorui , LI Weiping . Relationship between subtypes of T follicular helper cells and unexplained recurrent spontaneous abortion[J]. Journal of Shanghai Jiaotong University (Medical Science), 2017, 37 (10): 1346- 1349.
56 Gardner L , Moffett A . Dendritic cells in the human decidua[J]. Biol Reprod, 2003, 69 (4): 1438- 1446.
doi: 10.1095/biolreprod.103.017574
57 Wei R , Lai N , Zhao L , et al. Dendritic cells in pregnancy and pregnancy-associated diseases[J]. Biomed Pharmacother, 2021, 133, 110921.
doi: 10.1016/j.biopha.2020.110921
58 Tagliani E , Erlebacher A . Dendritic cell function at the maternal-fetal interface[J]. Expert Rev Clin Immunol, 2011, 7 (5): 593- 602.
doi: 10.1586/eci.11.52
59 Darmochwal-Kolarz DA , Kludka-Sternik M , Chmielewski T , et al. The expressions of CD200 and CD200R molecules on myeloid and lymphoid dendritic cells in pre-eclampsia and normal pregnancy[J]. Am J Reprod Immunol, 2012, 67 (6): 474- 481.
doi: 10.1111/j.1600-0897.2012.01126.x
60 Rieger L , Honig A , Sutterlin M , et al. Antigen-presenting cells in human endometrium during the menstrual cycle compared to early pregnancy[J]. J Soc Gynecol Investig, 2004, 11 (7): 488- 493.
doi: 10.1016/j.jsgi.2004.05.007
61 Kammerer U , Kruse A , Barrientos G , et al. Role of dendritic cells in the regulation of maternal immune responses to the fetus during mammalian gestation[J]. Immunol Invest, 2008, 37 (5): 499- 533.
doi: 10.1080/08820130802191334
[1] 贾雪芹1,刘海英2,马玉燕2,高凌雪3,刘媛2. 肝细胞生长因子对滋养细胞HLX1基因的表达及侵袭能力的影响[J]. 山东大学学报(医学版), 2010, 48(2): 58-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[2] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[3] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[4] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[5] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[6] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[7] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[8] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[9] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[10] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .