您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (9): 37-42.doi: 10.6040/j.issn.1671-7554.0.2021.0966

• 专家综述 • 上一篇    下一篇

低强度脉冲式超声波机械力生物链内源性干细胞激活与功能修复的研究进展

夏术阶,管延杰   

  1. 上海交通大学附属第一人民医院泌尿外科, 上海 200080
  • 发布日期:2021-10-15
  • 通讯作者: 夏术阶. E-mail:xsjurologist@163.com
  • 基金资助:
    国家自然科学基金(81930018)

Progress on the activation of endogenous stem cells and functional repair in LIPUS mechanotransduction

XIA Shujie, GUAN Yanjie   

  1. Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
  • Published:2021-10-15

摘要: 近年来,以低强度脉冲式超声波(LIPUS)为代表的机械力治疗手段已被广泛用于康复医学、骨折修复、神经损伤修复、泌尿系统疾病等领域。目前研究表明,LIPUS可能通过激活内源性干细胞参与组织修复,但是机械力如何通过生物链的转化而激活干细胞的具体机制尚不明确,因此对机械力生物链传导过程的进一步探索有助于揭示LIPUS的作用机制并为后续的研究与临床应用提供帮助。

关键词: 低强度脉冲式超声波, 机械力生物链, 内源性干细胞

Abstract: In recent years, mechanical therapies represented by low-intensity pulsed ultrasound(LIPUS)have been widely used in rehabilitation medicine, fracture repair, nerve injury repair, urinary system diseases and other fields. Current studies have shown that LIPUS may participate in tissue repair by activating endogenous stem cells, but the specific mechanism by which mechanical force activates stem cells through the transformation of the biological chain is still unclear. Therefore, further exploration of the conduction process of mechanotransduction will help to reveal the mechanism of LIPUS and provide reference for subsequent researches and clinical applications.

Key words: Low-intensity pulsed ultrasound, Mechanotransduction, Endogenous stem cells

中图分类号: 

  • R691
[1] Harrison A, Lin S, Pounder N, et al. Mode & mechanism of low intensity pulsed ultrasound(LIPUS)in fracture repair [J]. Ultrasonics, 2016, 70: 45-52.
[2] Langer MD, Levine V, Taggart R, et al. Pilot Clinical Studies of Long Duration, Low Intensity Therapeutic Ultrasound for Osteoarthritis [J]. Proc IEEE Annu Northeast Bioeng Conf, 2014, 14789673. doi: 10.1109/NEBEC.2014.6972850.
[3] Lin G, Reed-Maldonado AB, Lin M, et al. Effects and mechanisms of low-intensity pulsed ultrasound for chronic prostatitis and chronic pelvic pain syndrome [J]. Int J Mol Sci, 2016, 17(7): 1057.
[4] de Lucas B, Pérez LM, Bernal A, et al. Ultrasound therapy: experiences and perspectives for regenerative medicine [J]. Genes(Basel), 2020, 11(9): 1086.
[5] 郭应禄, 辛钟成, 李辉喜, 等. 迎接生命科学第三次革命 重视微能量医学发展[J]. 北京大学学报(医学版), 2015, 47(4): 559-565.
[6] 郭霜, 满江位, 姜春倩, 等. 低强度脉冲超声的生物物理学效应及相关机制的研究进展[J]. 中国医学物理学杂志, 2019, 36(5): 605-609. GUO Shuang, MAN Jiangwei, JIANG Chunqian, et al. Progress in biophysical effects of low-intensity pulsed ultrasound and related mechanisms [J]. Chinese Journal of Medical Physics, 2019, 36(5): 605-609.
[7] OBrien WD Jr. Ultrasound-biophysics mechanisms[J]. Prog Biophys Mol Biol, 2007, 93(1-3):212-255.
[8] Budhiraja G, Sahu N, Subramanian A. Low-intensity ultrasound upregulates the expression of cyclin-D1 and promotes cellular proliferation in human mesenchymal stem cells [J]. Biotechnol J, 2018, 13(4): e1700382.
[9] Sato M, Nagata K, Kuroda S, et al. Low-intensity pulsed ultrasound activates integrin-mediated mechanotransduction pathway in synovial cells [J]. Ann Biomed Eng, 2014, 42(10): 2156-2163.
[10] Choi BH, Choi MH, Kwak MG, et al. Mechanotransduction pathways of low-intensity ultrasound in C-28/I2 human chondrocyte cell line [J]. Proc Inst Mech Eng Part H J Eng Med, 2007, 221(5): 527-535.
[11] Qiu Z, Guo J, Kala S, et al. The mechanosensitive ion channel Piezo1 significantly mediates in vitro ultrasonic stimulation of neurons [J]. iScience, 2019, 21: 448-457.
[12] Gao Q, Cooper PR, Walmsley AD, et al. Role of piezo channels in ultrasound-stimulated dental stem cells [J]. J Endod, 2017, 43(7): 1130-1136.
[13] Mortimer AJ, Dyson M. The effect of therapeutic ultrasound on calcium uptake in fibroblasts [J]. Ultrasound Med Biol, 1988, 14(6):499-506.
[14] Plaksin M, Shoham S, Kimmel E. Intramembrane cavitation as a predictive bio-piezoelectric mechanism for ultrasonic brain stimulation [J]. Physical Review X, 2013, 4(1). doi:10.1103/physRevX.4.011004.
[15] Baker KG, Robertson VJ, Duck FA. A review of therapeutic ultrasound: biophysical effects [J]. Phys Ther, 2001, 81(7): 1351-1358.
[16] Lehmann JF. The biophysical basis of biologic ultrasonic reactions with special reference to ultrasonic therapy. Arch. Phys [J]. Med. Rehabil, 1953, 34(3):139-152.
[17] Lehmann JF, Warren CG, Scham SM. Therapeutic Heat and Cold [J]. Clin Orthop Relat Res, 1974(99): 207-245. doi:10.1097/00003086-197403000-00028.
[18] Zhou YF. High intensity focused ultrasound in clinical tumor ablation [J]. World J Clin Oncol, 2011, 2(1): 8-27. doi:10.1097/00003086-197403000-00028.
[19] Hannemann PF, Mommers EH, Schots JP, et al. The effects of low-intensity pulsed ultrasound and pulsed electromagnetic fields bone growth stimulation in acute fractures: a systematic review and meta-analysis of randomized controlled trials [J]. Arch Orthop Trauma Surg, 2014, 134(8): 1093-1106.
[20] Jiang X, Savchenko O, Li Y, et al. A review of low-intensity pulsed ultrasound for therapeutic applications [J]. IEEE Trans Biomed Eng, 2019, 66(10): 2704-2718.
[21] Kumagai K, Takeuchi R, Ishikawa H, et al. Low-intensity pulsed ultrasound accelerates fracture healing by stimulation of recruitment of both local and circulating osteogenic progenitors [J]. J Orthop Res, 2012, 30(9): 1516-1521.
[22] Wei FY, Leung KS, Li G, et al. Low intensity pulsed ultrasound enhanced mesenchymal stem cell recruitment through stromal derived factor-1 signaling in fracture healing [J]. PLoS One, 2014, 9(9): e106722.
[23] Cui JH, Park K, Park SR, et al. Effects of low-intensity ultrasound on chondrogenic differentiation of mesenchymal stem cells embedded in polyglycolic acid: an in vivo study [J]. Tissue Eng, 2006, 12(1): 75-82.
[24] Lai CH, Chen SC, Chiu LH, et al. Effects of low-intensity pulsed ultrasound, dexamethasone/TGF-beta1 and/or BMP-2 on the transcriptional expression of genes in human mesenchymal stem cells: chondrogenic vs. osteogenic differentiation [J]. Ultrasound Med Biol, 2010, 36(6): 1022-1033.
[25] Schumann D, Kujat R, Zellner J, et al. Treatment of human mesenchymal stem cells with pulsed low intensity ultrasound enhances the chondrogenic phenotype in vitro [J]. Biorheology, 2006, 43(3-4): 431-443.
[26] Xia P, Wang X, Qu Y, et al. TGF-β1-induced chondrogenesis of bone marrow mesenchymal stem cells is promoted by low-intensity pulsed ultrasound through the integrin-mTOR signaling pathway[J]. Stem Cell Res Ther, 2017, 8(1):281.
[27] Kusuyama J, Bandow K, Shamoto M, et al. Low intensity pulsed ultrasound(LIPUS)influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway [J]. J Biol Chem, 2014, 289(15): 10330-10344.
[28] Carina V, Costa V, Raimondi L, et al. Effect of low-intensity pulsed ultrasound on osteogenic human mesenchymal stem cells commitment in a new bone scaffold [J]. J Appl Biomater Funct Mater, 2017, 15(3): e215-e222.
[29] Mourad PD, Lazar DA, Curra FP, et al. Ultrasound accelerates functional recovery after peripheral nerve damage [J]. Neurosurgery, 2001, 48(5): 1136-1140.
[30] Crisci AR, Ferreira AL. Low-intensity pulsed ultrasound accelerates the regeneration of the sciatic nerve after neurotomy in rats [J]. Ultrasound Med Biol, 2002, 28(10):1335-1341.
[31] Jiang W, Wang Y, Tang J, et al. Low-intensity pulsed ultrasound treatment improved the rate of autograft peripheral nerve regeneration in rat [J]. Sci Rep, 2016, 6: 22773. doi:10.1038/srep22773.
[32] Schuhfried O, Vukanovic D, Kollmann C, et al. Effects of pulsed ultrasound therapy on sensory nerve conduction parameters and the pain threshold perceptions in humans [J]. PM R, 2017, 9(8): 781-786.
[33] Lv Y, Nan P, Chen G, et al. In vivo repair of rat transected sciatic nerve by low-intensity pulsed ultrasound and induced pluripotent stem cells-derived neural crest stem cells [J]. Biotechnol Lett, 2015, 37(12): 2497-2506.
[34] Lv Y, Zhao PC, Chen GB, et al. Effects of low-intensity pulsed ultrasound on cell viability, proliferation and neural differentiation of induced pluripotent stem cells-derived neural crest stem cells [J]. Biotechnol Lett, 2013, 35(12): 2201-2212.
[35] Xia B, Zou Y, Xu Z, et al. Gene expression profiling analysis of the effects of low-intensity pulsed ultrasound on induced pluripotent stem cell-derived neural crest stem cells [J]. Biotechnol Appl Biochem, 2017, 64(6): 927-937.
[36] Xia B, Chen G, Zou Y, et al. Low-intensity pulsed ultrasound combination with induced pluripotent stem cells-derived neural crest stem cells and growth differentiation factor 5 promotes sciatic nerve regeneration and functional recovery [J]. J Tissue Eng Regen Med, 2019, 13(4): 625-636.
[37] Salonia A, Bettocchi C, Boeri L, et al. European association of urology guidelines on sexual and reproductive health-2021 update: male sexual dysfunction [J]. Eur Urol, 2021, 80(3): 333-357.
[38] Yafi FA, Jenkins L, Albersen M, et al. Erectile dysfunction[J]. Nat Rev Dis Primers, 2016, 2: 16003. doi:10.1038/nrdp.2016.3.
[39] Lei H, Xin H, Guan R, et al. Low-intensity pulsed ultrasound improves erectile function in streptozotocin-induced type I diabetic rats [J]. Urology, 2015, 86(6): 1241.
[40] Peng D, Yuan H, Liu T, et al. Smooth muscle differentiation of penile stem/progenitor cells induced by microenergy acoustic pulses in vitro [J]. J Sex Med, 2019, 16(12): 1874-1884.
[41] Cui W, Li H, Guan R, et al. Efficacy and safety of novel low-intensity pulsed ultrasound(LIPUS)in treating mild to moderate erectile dysfunction: a multicenter, randomized, double-blind, sham-controlled clinical study [J]. Transl Androl Urol, 2019, 8(4): 307-319.
[42] 夏术阶, 陈辉熔, 李铮, 等. 低强度脉冲超声机械力不同频次治疗勃起功能障碍有效性及安全性观察[J]. 中华医学杂志, 2020, 100(18): 1432-1436. XIA Shujie, CHEN Huirong, LI Zheng, et al. Efficacy and safety of low-intensity pulsed ultrasound at different intervals by mechanical force in treating erectile dysfunction: a preliminary study [J]. Chinese Medical Journal, 2020, 100(18): 1432-1436.
[43] Ladegaard PBJ, Mortensen J, Skov-Jeppesen SM, et al. Erectile dysfunction a prospective randomized placebo-controlled study evaluating the effect of low-intensity extracorporeal shockwave therapy(LI-ESWT)in men with erectile dysfunction following radical prostatectomy [J]. Sex Med, 2021, 9(3): 100338.
[44] Scroppo FI, Pezzoni F, Gaeta F, et al. Li-Eswt improves hemodynamic parameters thus suggesting neoangiogenesis in patients with vascular erectile dysfunction [J]. Int J Impot Res, 2021. doi:10.1038/s41443-021-00411-0.
[45] Qiu X, Lin G, Xin Z, et al. Effects of low-energy shockwave therapy on the erectile function and tissue of a diabetic rat model [J]. J Sex Med, 2013, 10(3): 738-746.
[46] Lin G, Reed-Maldonado AB, Wang B, et al. In situ activation of penile progenitor cells with low-intensity extracorporeal shockwave therapy [J]. J Sex Med, 2017, 14(4): 493-501.
[47] Aicher WK, Hart ML, Stallkamp J, et al. Towards a treatment of stress urinary incontinence: application of mesenchymal stromal cells for regeneration of the sphincter muscle [J]. J Clin Med, 2014, 3(1): 197-215.
[48] Klein G, Hart ML, Brinchmann JE, et al. Mesenchymal stromal cells for sphincter regeneration [J]. Adv Drug Deliv Rev, 2015, 82-83: 123-136. doi:10.1016/j.addr.2014.10.026.
[49] Yang B, Li M, Lei H, et al. Low intensity pulsed ultrasound influences the myogenic differentiation of muscle satellite cells in a stress urinary incontinence rat model [J]. Urology, 2019, 123: 297. doi:10.1016/j.urology.2018.09.020.
[50] Wang HS, Oh BS, Wang B, et al. Low-intensity extracorporeal shockwave therapy ameliorates diabetic underactive bladder in streptozotocin-induced diabetic rats [J]. BJU Int, 2018, 122(3): 490-500.
[51] Xu Y, Guan R, Lei H, et al. Therapeutic potential of adipose-derived stem cells-based micro-tissues in a rat model of postprostatectomy erectile dysfunction [J]. J Sex Med, 2014, 11(10): 2439-2448.
[52] Lin G, Yang R, Banie L, et al. Effects of transplantation of adipose tissue-derived stem cells on prostate tumor [J]. Prostate, 2010, 70(10): 1066-1073.
[53] Ning GZ, Song WY, Xu H, et al. Bone marrow mesenchymal stem cells stimulated with low-intensity pulsed ultrasound: Better choice of transplantation treatment for spinal cord injury: treatment for SCI by LIPUS-BMSCs transplantation [J]. CNS Neurosci Ther, 2019, 25(4): 496-508.
[54] Amini A, Chien SF, Bayat M. Impact of ultrasound therapy on stem cell differentiation - a systematic review [J]. Curr Stem Cell Res Ther, 2020, 15(5): 462-472.
[1] 焦方东,陈军,刘铭,王振宇,张忠晓,王东,史本康,徐祗顺. 输尿管软硬镜联合钬激光在上尿路异物中的应用[J]. 山东大学学报(医学版), 2017, 55(8): 95-98.
[2] 张英晨1,叶恒志2,蒋立城1,丁吉阳1,任辉杰1,刘晓2, 吴志强1,赵帅1, 成小建1,毕文浩1, 程玉峰1, 王洪同1. 组合式输尿管软镜联合钬激光治疗上尿路结石48例报告[J]. 山东大学学报(医学版), 2013, 51(10): 90-92.
[3] 习海波,傅龙龙,王共先,傅斌,李煜,宋小芬. 尿激酶3′-UTR 基因多态性与特发性草酸钙结石易感性的关系[J]. 山东大学学报(医学版), 2013, 51(5): 105-107.
[4] 赵俊丽1,王志平2,王俭勤1 . 重组人β防御素2在膀胱上皮细胞中的表达及活性检测[J]. 山东大学学报(医学版), 2011, 49(4): 43-.
[5] 李大伟,焦伟,王铁柳,阎磊,任巨超,田素建,徐忠华,范医东,刘海南. 硫酸乙酰肝素蛋白多糖基因多态性与草酸钙结石易感性的关系[J]. 山东大学学报(医学版), 2010, 48(1): 89-93.
[6] 褚勇 王玉杰 孙云. 经尿道电切镜前列腺剜除术和电切术治疗前列腺增生症的对比分析[J]. 山东大学学报(医学版), 2009, 47(5): 131-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[2] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[3] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[4] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[5] 姜保东,马祥兴,王青,王茜,冯晓源,李克,于富华 . 脑CT静脉造影扫描时相及重建层厚的选择[J]. 山东大学学报(医学版), 2008, 46(11): 1084 -1086 .
[6] 李洧,李道卫,叶茜,高顺翠,姜淑娟. 经支气管镜针吸活检在纵隔疾病诊断中的价值[J]. 山东大学学报(医学版), 2008, 46(11): 1063 -1065 .
[7] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .
[8] 王旭平,赵玲,冯玉新,商林珊,刘金成,曹伟朋,朱晓音,辛华. 绞股蓝总苷对谷氨酸诱导的胎鼠大脑皮层神经元氧化性损伤保护机制的研究[J]. 山东大学学报(医学版), 2006, 44(6): 564 -567 .
[9] 王学萍,杨洪玲. 洛汀新治疗高血压50例报告[J]. 山东大学学报(医学版), 2007, (2): 213 .
[10] 王晓菊1 ,汪明明2 ,徐皖苏2 ,赵胜梅3 ,崔速南2 ,李晓迎2 ,刘春华1
. 慢性HBV活动性感染者外周血淋巴细胞
泛素mRNA的表达及临床意义

[J]. 山东大学学报(医学版), 2009, 47(02): 58 -61 .