您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (6): 8-13.doi: 10.6040/j.issn.1671-7554.0.2019.1449

• • 上一篇    

利用数据库预测基因与胶质母细胞瘤的关联

田宝睿1,张永超2,韩晓阳1,田颖颖1,王传玺1   

  1. 山东大学附属省立医院 1.肿瘤科;2.神经外科, 山东 济南 250021
  • 发布日期:2022-09-27
  • 通讯作者: 王传玺. E-mail:chuanxiwang@126.com
  • 基金资助:
    国家自然科学基金(81473483)

Prediction of the association between genes and glioblastoma based on databases

TIAN Baorui1, ZHANG Yongchao2, HAN Xiaoyang1, TIAN Yingying1, WANG Chuanxi1   

  1. 1. Department of Oncology;
    2. Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
  • Published:2022-09-27

摘要: 目的 从预后相关角度探索未被研究的胶质母细胞瘤(GBM)关键基因,并探索其作为GBM调节基因的潜力。 方法 基于TCGA数据库,使用GEPIA筛选预后相关基因及其表达相关基因,分析基因在GBM患者与正常人脑组织的表达模式,使用LinkedOmics分析基因与GBM患者的临床参数相关性。 结果 SAMD13、FAM20C、FUCA1、RARRES1的表达与GBM患者无病生存期(DFS)和总生存期(OS)相关,同时它们在GBM患者与正常人脑组织中存在差异表达,针对其在GBM患者组织表达相关基因的京都基因与基因组百科全书(KEGG)和基因本体论(GO)分析提示它们密切参与GBM的肿瘤形成与进展过程。 结论 SAMD13、FAM20C、FUCA1、RARRES1具有成为GBM调控基因与诊断标志的潜力,它们密切参与GBM相关调控机制。

关键词: 胶质母细胞瘤, 调控基因, 诊断标志, 生物信息学分析

Abstract: Objective To explore the key genes related to prognosis of glioblastoma(GBM)and to investigate their potential as regulatory genes of GBM. Methods Based on the cancer genome atlas(TCGA)database, GBM prognosis related genes and their expression-related genes were screened with GEPIA. The gene expression patterns in GBM patients and healthy controls were analyzed. The correlation between clinical parameters and target genes in GBM patients was analyzed with LinkedOmics. Results The expressions of SAMD13, FAM20C, FUCA1 and RARRES1 were related to both disease-free survival(DFS)and overall survival(OS)in GBM patients. The four genes expressed differently in GBM patients and healthy controls. Kyoto encyclopedia of genes and genomes( KEGG )and gene ontology(GO)analyses showed these genes were closely involved in the oncogenesis and progression of GBM. Conclusion SAMD13, FAM20C, FUCA1 and RARRES1 have the potential to serve as regulatory genes and diagnostic markers of GBM, and they are closely involved in GBM-related regulatory mechanism.

Key words: Glioblastoma, Regulatory genes, Diagnostic markers, Bioinformatics analysis

中图分类号: 

  • R739.4
[1] Ostrom QT, Bauchet L, Davis FG, et al. The epidemiology of glioma in adults: a “state of the science” review [J]. Neuro Oncol, 2014, 16(7): 896-913.
[2] Ostrom QT, Gittleman H, Farah P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010 [J]. Neuro Oncol, 2013, 15(Suppl 2): 1-56.
[3] Zanders ED, Svensson F, Bailey DS. Therapy for glioblastoma: is it working? [J]. Drug Discov Today, 2019, 24(5): 1193-1201.
[4] 吴劲松, 毛颖. 脑胶质瘤手术理念和研究热点[J]. 中国神经精神疾病杂志, 2009, 35(6): 376-379.
[5] Fabian D, Guillermo Prieto Eibl MDP, Alnahhas I, et al. Treatment of glioblastoma(GBM)with the addition of tumor-treating fields(TTF): a review [J]. Cancers(Basel),2019,11(2):174. doi:10.3390/cancers11020174.
[6] Park SJ, Smith CP, Wilbur RR, et al. An overview of MCT1 and MCT4 in GBM: small molecule transporters with large implications [J]. Am J Cancer Res, 2018, 8(10): 1967-1976.
[7] Liu CH, Fu HJ, Liu XP, et al. LINC00470 coordinates the epigeneticregulation of ELFN2 to distract GBM cell Autophagy [J]. Molecular Therapy, 2018, 26(9): 2267-2281.
[8] Tomczak K, Czerwińska P, Wiznerowicz M. Review the Cancer Genome Atlas(TCGA): an immeasurable source of knowledge [J]. Contemp Oncol, 2015, 19(1A): 68-77.
[9] Gao GF, Parker JS, Reynolds SM, et al. Before and after: comparison of legacy and harmonized TCGA genomic data commons data [J]. Cell Syst, 2019, 9(1): 24-34.
[10] Tang ZF, Li CW, Kang BX, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses [J]. Nucleic Acids Res, 2017, 45(W1): 98-102.
[11] Vasaikar SV, Straub P, Wang J, et al. Linked Omics: analyzing multi-omics data within and across 32 cancer types [J]. Nucleic Acids Res, 2018, 46(D1): 956-963.
[12] Bindea G, Mlecnik B, Hackl H, et al. Clue go: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks [J]. Bioinformatics, 2009, 25(8): 1091-1093.
[13] Bindea G, Galon J, Mlecnik B. Clue pedia cytoscapeplugin: pathway insights using integrated experimental and in silico data [J]. Bioinformatics, 2013, 29(5): 661-663.
[14] 薛湛, 李德岭, 李桂林, 等. 影响多中心脑胶质瘤患者预后的因素分析[J]. 中华神经外科杂志, 2017, 33(3): 234-238. XUE Zhen, LI Deling, LI Guilin, et al. Prognosis factor analysis of cranial multicentricgliomas [J]. Chinese Journal of Neurosurgery, 2017, 33(3): 234-238.
[15] 张俊鹏. 影响高级别胶质瘤复发的相关临床及病理因素的研究[D]. 济南: 山东大学, 2017.
[16] Zheng XQ, Zhang NQ, Wu HJ, et al. Estimating and accounting for tumor purity in the analysis of DNA methylation data from cancer studies [J]. Genome Biol, 2017, 18(1): 17. doi:10.1186/s13059-016-1143-5.
[17] Schulze Heuling E,Knab F, Radke J, et al. Prognostic relevance of tumor purity and interaction with MGMT methylation in glioblastoma [J]. Mol Cancer Res, 2017, 15(5): 532-540.
[18] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation [J]. Cell, 2011, 144(5): 646-674.
[19] Marcel V, Ghayad SE, Belin S, et al. P53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer [J]. Cancer Cell, 2013, 24(3): 318-330.
[20] Syrkina MS, Maslakova AA, Potashnikova DM, et al. Dual role of the extracellular domain of human mucin MUC1 in metastasis [J]. J Cell Biochem, 2017, 118(11): 4002-4011.
[21] Vredevoogd DW, Kuilman T, Ligtenberg MA, et al. Augmenting immunotherapy impact by lowering tumor TNF cytotoxicity threshold [J]. Cell, 2019, 178(3): 585-599.
[22] Poullenot F, Seksik P, Beaugerie L, et al. Risk of incident cancer in inflammatory bowel disease patients starting anti-TNF therapy while having recent malignancy [J]. Inflamm Bowel Dis, 2016, 22(6): 1362-1369.
[23] Che MX, Wang R, Li XX, et al. Expanding roles of superoxide dismutases in cell regulation and cancer [J]. Drug Discov Today, 2016, 21(1): 143-149.
[24] Desgagné V, Bouchard L, Guérin R. microRNAs in lipoprotein and lipid metabolism: from biological function to clinical application [J]. Clin Chem Lab Med, 2017, 55(5): 667-686.
[25] Martire S, Gogate AA, Whitmill A, et al. Phosphorylation of histone H3.3 at serine 31 promotes p300 activity and enhancer acetylation [J]. Nat Genet, 2019, 51(6): 941-946.
[26] Barra V, Logsdon GA, Scelfo A, et al. Phosphorylation of CENP-A on serine 7 does not control centromere function [J]. Nat Commun, 2019, 10(1): 175. doi:10.1038/s41467-018-08073-1.
[27] 陈玉升, 郭杨, 申汉威, 等. 胶质瘤差异表达基因筛选、功能富集和相关信号通路生物信息学分析[J]. 中华医学杂志, 2019, 99(29): 2311-2314. CHEN Yusheng, GUO Yang, SHEN Hanwei, et al. Screening function enrichment and related signaling pathways bioinformatics analysis of differentially expressed gene in glioma [J]. National Medical Journal of China, 2019, 99(29): 2311-2314.
[28] 杨丽, 韩娜, 于洋, 等. 采用生物信息学挖掘胶质母细胞瘤核心基因及对患者生存预后的分析 [J]. 华中科技大学学报(医学版), 2018, 47(3): 255-261,273. YANG Li, HAN Na, YU Yang, et al. Data mining in bioinformatics of core gene of glioblastoma and analysis of its survival prognosis [J]. Acta Medicinae Universitatis Scientiae et Technologiae Huazhong, 2018, 47(3): 255-261,273.
[1] 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71.
[2] 王剑,周文婧,薛知易,刘晓菲. 脑胶质母细胞瘤模型研究概况及类脑模型的研发应用[J]. 山东大学学报 (医学版), 2020, 1(8): 74-80.
[3] 孔娟,张珍,郭伟, 韩萍. 利用网络数据库预测脂肪因子APLN、NUCB2、RARRES2在胶质母细胞瘤中的表达[J]. 山东大学学报 (医学版), 2019, 57(6): 61-67.
[4] 韩晓, 薛皓, 闫绍峰, 郭兴, 李彤, 郭小凡, 高校, 李刚. miR-584对人胶质母细胞瘤侵袭和迁移能力的影响[J]. 山东大学学报(医学版), 2015, 53(4): 16-21.
[5] 梁楠,刘滨,范海涛,辛涛,郭华,刘威,赵光宇,栾立明,许尚臣,庞琦. 多形性胶质母细胞瘤患者高迁移率蛋白A1表达与复发时间的关系[J]. 山东大学学报(医学版), 2013, 51(4): 59-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!