您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (1): 8-13.doi: 10.6040/j.issn.1671-7554.0.2020.1297

• 基础医学 • 上一篇    下一篇

CDK7抑制剂THZ1对人胶质瘤细胞U251放疗的增敏性

李文清,叶兰,姜玉华   

  1. 山东大学第二医院肿瘤防治中心, 山东 济南 250031
  • 发布日期:2021-01-09
  • 通讯作者: 姜玉华. E-mail:jiangyuhua@sdu.edu.cn
  • 基金资助:
    山东省自然科学基金(ZR2017MH027);山东省重点研发计划(2019GSF108117)

CDK7 inhibitor THZ1 increases the radiosensitivity of human glioma cell line U251

LI Wenqing, YE Lan, JIANG Yuhua   

  1. Cancer Prevention and Control Center, The Second Hospital of Shandong University, Jinan 250031, Shandong, China
  • Published:2021-01-09

摘要: 目的 探讨细胞周期蛋白酶抑制剂7(CDK7)THZ1对人胶质瘤细胞U251的体外放射增敏性。 方法 体外培养人胶质瘤细胞U251。MTT检测THZ1对U251的毒性作用, 绘制不同浓度(0、8、16、32、64、128、256、512 noml/L)THZ1处理下的细胞存活曲线,并计算其IC50IC20,IC20作为后续试验的药物作用浓度。克隆形成实验检测射线联合THZ1对U251的作用,计算放射敏感性参数,绘制集落形成数量曲线。流式细胞术检测各组细胞周期分布。Western blotting检测CDK7细胞周期蛋白、Bax凋亡相关蛋白及γH2AX蛋白表达。多组间比较采用单因素方差分析,两组间比较采用独立样本t检验,2因素组间对比采用析因设计方差分析。 结果 THZ1对U251具有增殖抑制作用,且呈浓度和时间依赖性;单独应用THZ1可使CDK7细胞周期蛋白抑制,X射线(6 Gy)联合IC20浓度THZ1(10 nmol/L)能够降低U251的克隆能力,放射增敏比为1.478,同时可使G0/G1期细胞比例由67%减少到11%、G2/M期细胞比例由12%增加到70%; 凋亡相关蛋白Bax表达增加,DNA双链断裂标志γH2AX蛋白表达增加。 结论 THZ1对U251具有放射增敏作用,其可能的机制是THZ1联合射线降低细胞损伤修复能力, 诱导细胞凋亡,调节凋亡相关蛋白的表达,改变细胞生长周期。

关键词: 人胶质瘤细胞U251, 放射增敏, 增殖, 细胞周期

Abstract: Objective To investigate the effects of cyclin-dependent kinase 7(CDK7)inhibitor, THZ1, on the radiosensitivity of human glioma cell line U251 in vitro. Methods U251 cells were cultured in vitro. The toxic effects of THZ1 on U251 cells was detected with MTT. The cell survival curves were drawn at different concentrations of THZ1(0, 8, 16, 32, 64, 128, 256, 512 noml/L). IC50 and IC20 were calculated and IC20 was used as the concentration for subsequent experiments. The effects of X-ray combined with THZ1 on U251 was detected with clone formation experiment. Radiosensitivity parameters were calculated and the curve of colony formation number was drawn. Cell cycle distribution in each treatment group was detected with flow cytometry. The expressions of CDK7 cyclin, Bax apoptosis-related proteins and γH2AX were detected with Western blotting. One-factor analysis of variance was used for comparison among groups. Independent sample t test was used for comparison between groups. Factorial design analysis of variance was used for two-factor comparison among groups. Results THZ1 inhibited U251 proliferation in a concentration- and time-dependent manner. THZ1 inhibited CDK7 cyclin. X-ray(6 Gy)combined with IC20 concentration of THZ1(10 nmol/L)reduced the cloning ability of U251(the ratio of enhancing sensitivity being 1.478), decreased the percentage of G0/G1 phase from 67% to 11%, increased the percentage of G2/M phase from 12% to 70%, and increased the expressions of Bax apoptosis-related proteins and γH2AX. Conclusion THZ1 can increase the radiosensitivity of U251. The possible mechanism is that THZ1 combined with X-ray inhibits the repair ability of cells, induces cell apoptosis, regulates expressions of apoptosis-related proteins, and intervenes in the cell cycle.

Key words: Human glioma cell U251, Radiosensitivity, Proliferation, Cell cycle

中图分类号: 

  • R739.41
[1] Giotta Lucifero A, Luzzi S, Brambilla I, et al. Potential roads for reaching the summit: an overview on target therapies for high-grade gliomas[J]. Acta Biomed, 2020, 91(7-S): 61-78.
[2] Trifiletti DM, Malouff TD, McGovern SL, et al. Repeat radiation in the brain: managing patients with locally recurrent glioma[J]. Semin Radiat Oncol, 2020, 30(3): 218-222.
[3] Ostrom QT, Gittleman H, Liao P, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014[J]. Neuro Oncol, 2017, 19(suppl_5): v1-1v88.
[4] Liu Y, Zhang T, Li G, et al. Radiosensitivity enhancement by Co-NMS-mediated mitochondrial impairment in glioblastoma[J]. J Cell Physiol, 2020, 235(12): 9623-9634.
[5] Farooqi A, Li J, de Groot J, et al. Current role of radiation therapy in the management of malignant central nervous system tumors[J]. Hematol Oncol Clin North Am, 2020, 34(1): 13-28.
[6] Kegelman TP, Wu B, Das SK, et al. Inhibition of radiation-induced glioblastoma invasion by genetic and pharmacological targeting of MDA-9/Syntenin[J]. Proc Natl Acad Sci U S A, 2017, 114(2): 370-375.
[7] Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2004, 59(4): 928-942.
[8] Kwiatkowski N, Zhang T, Rahl PB, et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor[J]. Nature, 2014, 511(7511): 616-620.
[9] Cheng ZJ, Miao DL, Su QY, et al. THZ1 suppresses human non-small-cell lung cancer cells in vitro through interference with cancer metabolism[J]. Acta Pharmacol Sin, 2019, 40(6): 814-822.
[10] Zhong S, Zhang Y, Yin X, et al. CDK7 inhibitor suppresses tumor progression through blocking the cell cycle at the G2/M phase and inhibiting transcriptional activity in cervical cancer[J]. Onco Targets Ther, 2019, 12: 2137-2147. doi: 10.2147/OTT.S195655.
[11] Meng W, Wang J, Wang B, et al. CDK7 inhibition is a novel therapeutic strategy against GBM both in vitro and in vivo[J]. Cancer Manag Res, 2018, 10: 5747-5758. doi: 10.2147/CMAR.S183696.
[12] Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation[J]. Development, 2013, 140(15): 3079-3093.
[13] Fisher RP. Cdk7: a kinase at the core of transcription and in the crosshairs of cancer drug discovery[J]. Transcription, 2019, 10(2): 47-56.
[14] Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer[J]. Cell, 2017, 168(4): 629-643.
[15] Greenall SA, Lim YC, Mitchell CB, et al. Cyclin-dependent kinase 7 is a therapeutic target in high-grade glioma[J]. Oncogenesis, 2017, 6(5): e336. doi: 10.1038/oncsis.2017.33.
[16] Zhou Y, Lu L, Jiang G, et al. Targeting CDK7 increases the stability of Snail to promote the dissemination of colorectal cancer[J]. Cell Death Differ, 2019, 26(8): 1442-1452.
[17] Lewanski CR, Gullick WJ. Radiotherapy and cellular signalling[J]. Lancet Oncol, 2001, 2(6): 366-370.
[18] 戴寒莹, 徐克前. DNA双链断裂检测技术研究进展[J].中国生物工程杂志, 2020, 40(8): 55-62. DAI Hanying, XU Keqian. Research progress on DNA double-strand break assay[J]. China Biotechnology,2020, 40(8): 55-62.
[19] Tian J, Kong E, Wang X, et al. RSF-1 siRNA enhances tumor radiosensitivity in cervical cancer via enhanced DNA damage, cell cycle redistribution, and promotion of apoptosis[J]. Onco Targets Ther, 2020, 13: 3061-3071. doi: 10.2147/OTT.S246632.
[20] Wei T, Cheng S, Fu XN, et al. miR-219a-5p enhances the radiosensitivity of non-small cell lung cancer cells through targeting CD164[J]. Biosci Rep, 2020, 40(7). doi: 10.1042/BSR20192795.
[21] Elsesy ME, Oh-Hohenhorst SJ, Löser A, et al. Second-generation antiandrogen therapy radiosensitizes prostate cancer regardless of castration state through inhibition of DNA double strand break repair[J]. Cancers(Basel), 2020, 12(9):2467. doi: 10.3390/cancers12092467.
[22] Mladenov E, Iliakis G. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways[J]. Mutat Res, 2011, 711(1-2): 61-72.
[23] Wu G, Chen G, Zhou J, et al. Liriodenine enhances radiosensitivity in esophageal cancer ECA-109 cells by inducing apoptosis and G2/M arrest[J]. Oncol Lett, 2018, 16(4): 5020-5026.
[24] Desvoyes B, Gutierrez C. Roles of plant retinoblastoma protein: cell cycle and beyond[J]. EMBO J, 2020, 39(19): e105802. doi: 10.15252/embj.2020105802.
[25] Li J, Yang CX, Mei ZJ, et al. Involvement of cdc25c in cell cycle alteration of a radioresistant lung cancer cell line established with fractionated ionizing radiation[J]. Asian Pac J Cancer Prev, 2013, 14(10): 5725-5730.
[26] Ning J, Ma X, Long C, et al. Anti-tumor drug THZ1 suppresses TGFβ2-mediated EMT in lens epithelial cells via Notch and TGFβ/Smad signaling pathway[J]. J Cancer, 2019, 10(16): 3778-3788.
[27] 张晓英, 赵云, 刘桂香, 等. 放射线对人舌鳞癌细胞系Tca8113细胞生物学效应的影响[J]. 山东大学学报(医学版), 2019, 57(2): 70-74. ZHANG Xiaoying, ZHAO Yun, LIU Guixiang, et al. Biological response of human tongue squamous carcinoma cell line Tca8113 to radiation in vitro[J]. Journal of Shandong University, 2019, 57(2): 70-74.
[1] 王晓磊 张海涛 张辉 郭成浩. 舒血宁注射液对高碘致培养血管内皮细胞损伤的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 38-.
[2] 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58.
[3] 张振伟,李佳,陈克明. IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移[J]. 山东大学学报 (医学版), 2022, 60(9): 74-84.
[4] 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71.
[5] 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80.
[6] 宋甜,付琳琳,王秋敏,杨晓,王莹,边月红,石玉华. 脂肪酸转运蛋白1在多囊卵巢综合征患者颗粒细胞中的表达[J]. 山东大学学报 (医学版), 2022, 60(2): 22-26.
[7] 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120.
[8] 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12.
[9] 王芳,陈华,商丽红,李茹月,李咏梅,杨玉娥,哈春芳. U0126对子宫内膜异位症大鼠MEK/ERK/NF-κB通路及增殖侵袭的影响[J]. 山东大学学报 (医学版), 2021, 59(9): 148-154.
[10] 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89.
[11] 王正阳,夏艳,师凯旋,陶琨,王小杰. 曲美替尼在卵巢癌中对PAX8的表达作用[J]. 山东大学学报 (医学版), 2021, 59(10): 23-29.
[12] 杜甜甜,李娟,赵颖慧,段伟丽,王景,王允山,杜鲁涛,王传新. 长链非编码RNA LINC02474在结直肠癌中的表达特征及对细胞增殖的影响[J]. 山东大学学报 (医学版), 2021, 59(10): 57-67.
[13] 孙薏丰,高玉,梁永媛,高杨. CPLX2在30例肝癌组织的表达及其对体外细胞增殖与侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(9): 34-39.
[14] 李涵,付婷婷,张磊,延冰,孙涛,郭峰,尹晓. 过氧化物酶增殖物激活受体γ激动剂对24例肥胖症患者米色脂肪细胞分化的影响[J]. 山东大学学报 (医学版), 2020, 1(9): 8-13.
[15] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[2] 邵海港, 王璇, 王青. 山东地区人下颌第一前磨牙根管系统解剖研究[J]. 山东大学学报(医学版), 2014, 52(9): 85 -89 .
[3] 唐芳1,2 ,张颖倩3 ,王志强4 ,康殿民4 ,王洁贞1 ,薛付忠1 . 自然疫源性疾病疫源地空间结构的二维
最小生成树模型及其应用
[J]. 山东大学学报(医学版), 2009, 47(01): 106 -110 .
[4] 李玉亮,王永正,王晓华,张福君,朱立东,张万明,李 征,李振家,张开贤 . 动脉灌注吉西他滨联合125I粒子胰腺内植入治疗进展期胰腺癌[J]. 山东大学学报(医学版), 2007, 45(4): 393 -396 .
[5] 姜保东,马祥兴,王青,王茜,冯晓源,李克,于富华 . 脑CT静脉造影扫描时相及重建层厚的选择[J]. 山东大学学报(医学版), 2008, 46(11): 1084 -1086 .
[6] 朱晓丽1,郭淑玲1,苏磊1,冯玉新2,袁方曙1. 蠕形螨全蛋白提取及相对分子量鉴定[J]. 山东大学学报(医学版), 2014, 52(5): 58 -62 .
[7] 黄飞,王怀经,邢毅,高薇,李永刚,邢子英,李振中. NGF和GM1联合应用对坐骨神经损伤大鼠初级传入神经元的保护作用[J]. 山东大学学报(医学版), 2006, 44(4): 332 -335 .
[8] 王晓菊1 ,汪明明2 ,徐皖苏2 ,赵胜梅3 ,崔速南2 ,李晓迎2 ,刘春华1
. 慢性HBV活动性感染者外周血淋巴细胞
泛素mRNA的表达及临床意义

[J]. 山东大学学报(医学版), 2009, 47(02): 58 -61 .
[9] 钟女娟1,宋咏梅2,刘更生2,薛付忠1,刘言训1. 中药经验要素贝叶斯网络模型构建及应用[J]. 山东大学学报(医学版), 2012, 50(2): 157 .
[10] 马立新 李刚 苏雨行 张彩 张建. NKG2D在颅内肿瘤中的表达[J]. 山东大学学报(医学版), 2009, 47(5): 88 -91 .