山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (1): 8-13.doi: 10.6040/j.issn.1671-7554.0.2020.1297
李文清,叶兰,姜玉华
LI Wenqing, YE Lan, JIANG Yuhua
摘要: 目的 探讨细胞周期蛋白酶抑制剂7(CDK7)THZ1对人胶质瘤细胞U251的体外放射增敏性。 方法 体外培养人胶质瘤细胞U251。MTT检测THZ1对U251的毒性作用, 绘制不同浓度(0、8、16、32、64、128、256、512 noml/L)THZ1处理下的细胞存活曲线,并计算其IC50及IC20,将IC20作为后续试验的药物作用浓度。克隆形成实验检测射线联合THZ1对U251的作用,计算放射敏感性参数,绘制集落形成数量曲线。流式细胞术检测各组细胞周期分布。Western blotting检测CDK7细胞周期蛋白、Bax凋亡相关蛋白及γH2AX蛋白表达。多组间比较采用单因素方差分析,两组间比较采用独立样本t检验,2因素组间对比采用析因设计方差分析。 结果 THZ1对U251具有增殖抑制作用,且呈浓度和时间依赖性;单独应用THZ1可使CDK7细胞周期蛋白抑制,X射线(6 Gy)联合IC20浓度THZ1(10 nmol/L)能够降低U251的克隆能力,放射增敏比为1.478,同时可使G0/G1期细胞比例由67%减少到11%、G2/M期细胞比例由12%增加到70%; 凋亡相关蛋白Bax表达增加,DNA双链断裂标志γH2AX蛋白表达增加。 结论 THZ1对U251具有放射增敏作用,其可能的机制是THZ1联合射线降低细胞损伤修复能力, 诱导细胞凋亡,调节凋亡相关蛋白的表达,改变细胞生长周期。
中图分类号:
[1] Giotta Lucifero A, Luzzi S, Brambilla I, et al. Potential roads for reaching the summit: an overview on target therapies for high-grade gliomas[J]. Acta Biomed, 2020, 91(7-S): 61-78. [2] Trifiletti DM, Malouff TD, McGovern SL, et al. Repeat radiation in the brain: managing patients with locally recurrent glioma[J]. Semin Radiat Oncol, 2020, 30(3): 218-222. [3] Ostrom QT, Gittleman H, Liao P, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014[J]. Neuro Oncol, 2017, 19(suppl_5): v1-1v88. [4] Liu Y, Zhang T, Li G, et al. Radiosensitivity enhancement by Co-NMS-mediated mitochondrial impairment in glioblastoma[J]. J Cell Physiol, 2020, 235(12): 9623-9634. [5] Farooqi A, Li J, de Groot J, et al. Current role of radiation therapy in the management of malignant central nervous system tumors[J]. Hematol Oncol Clin North Am, 2020, 34(1): 13-28. [6] Kegelman TP, Wu B, Das SK, et al. Inhibition of radiation-induced glioblastoma invasion by genetic and pharmacological targeting of MDA-9/Syntenin[J]. Proc Natl Acad Sci U S A, 2017, 114(2): 370-375. [7] Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2004, 59(4): 928-942. [8] Kwiatkowski N, Zhang T, Rahl PB, et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor[J]. Nature, 2014, 511(7511): 616-620. [9] Cheng ZJ, Miao DL, Su QY, et al. THZ1 suppresses human non-small-cell lung cancer cells in vitro through interference with cancer metabolism[J]. Acta Pharmacol Sin, 2019, 40(6): 814-822. [10] Zhong S, Zhang Y, Yin X, et al. CDK7 inhibitor suppresses tumor progression through blocking the cell cycle at the G2/M phase and inhibiting transcriptional activity in cervical cancer[J]. Onco Targets Ther, 2019, 12: 2137-2147. doi: 10.2147/OTT.S195655. [11] Meng W, Wang J, Wang B, et al. CDK7 inhibition is a novel therapeutic strategy against GBM both in vitro and in vivo[J]. Cancer Manag Res, 2018, 10: 5747-5758. doi: 10.2147/CMAR.S183696. [12] Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation[J]. Development, 2013, 140(15): 3079-3093. [13] Fisher RP. Cdk7: a kinase at the core of transcription and in the crosshairs of cancer drug discovery[J]. Transcription, 2019, 10(2): 47-56. [14] Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer[J]. Cell, 2017, 168(4): 629-643. [15] Greenall SA, Lim YC, Mitchell CB, et al. Cyclin-dependent kinase 7 is a therapeutic target in high-grade glioma[J]. Oncogenesis, 2017, 6(5): e336. doi: 10.1038/oncsis.2017.33. [16] Zhou Y, Lu L, Jiang G, et al. Targeting CDK7 increases the stability of Snail to promote the dissemination of colorectal cancer[J]. Cell Death Differ, 2019, 26(8): 1442-1452. [17] Lewanski CR, Gullick WJ. Radiotherapy and cellular signalling[J]. Lancet Oncol, 2001, 2(6): 366-370. [18] 戴寒莹, 徐克前. DNA双链断裂检测技术研究进展[J].中国生物工程杂志, 2020, 40(8): 55-62. DAI Hanying, XU Keqian. Research progress on DNA double-strand break assay[J]. China Biotechnology,2020, 40(8): 55-62. [19] Tian J, Kong E, Wang X, et al. RSF-1 siRNA enhances tumor radiosensitivity in cervical cancer via enhanced DNA damage, cell cycle redistribution, and promotion of apoptosis[J]. Onco Targets Ther, 2020, 13: 3061-3071. doi: 10.2147/OTT.S246632. [20] Wei T, Cheng S, Fu XN, et al. miR-219a-5p enhances the radiosensitivity of non-small cell lung cancer cells through targeting CD164[J]. Biosci Rep, 2020, 40(7). doi: 10.1042/BSR20192795. [21] Elsesy ME, Oh-Hohenhorst SJ, Löser A, et al. Second-generation antiandrogen therapy radiosensitizes prostate cancer regardless of castration state through inhibition of DNA double strand break repair[J]. Cancers(Basel), 2020, 12(9):2467. doi: 10.3390/cancers12092467. [22] Mladenov E, Iliakis G. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways[J]. Mutat Res, 2011, 711(1-2): 61-72. [23] Wu G, Chen G, Zhou J, et al. Liriodenine enhances radiosensitivity in esophageal cancer ECA-109 cells by inducing apoptosis and G2/M arrest[J]. Oncol Lett, 2018, 16(4): 5020-5026. [24] Desvoyes B, Gutierrez C. Roles of plant retinoblastoma protein: cell cycle and beyond[J]. EMBO J, 2020, 39(19): e105802. doi: 10.15252/embj.2020105802. [25] Li J, Yang CX, Mei ZJ, et al. Involvement of cdc25c in cell cycle alteration of a radioresistant lung cancer cell line established with fractionated ionizing radiation[J]. Asian Pac J Cancer Prev, 2013, 14(10): 5725-5730. [26] Ning J, Ma X, Long C, et al. Anti-tumor drug THZ1 suppresses TGFβ2-mediated EMT in lens epithelial cells via Notch and TGFβ/Smad signaling pathway[J]. J Cancer, 2019, 10(16): 3778-3788. [27] 张晓英, 赵云, 刘桂香, 等. 放射线对人舌鳞癌细胞系Tca8113细胞生物学效应的影响[J]. 山东大学学报(医学版), 2019, 57(2): 70-74. ZHANG Xiaoying, ZHAO Yun, LIU Guixiang, et al. Biological response of human tongue squamous carcinoma cell line Tca8113 to radiation in vitro[J]. Journal of Shandong University, 2019, 57(2): 70-74. |
[1] | 王晓磊 张海涛 张辉 郭成浩. 舒血宁注射液对高碘致培养血管内皮细胞损伤的保护作用[J]. 山东大学学报(医学版), 2209, 47(6): 38-. |
[2] | 赵舸,邹存华,宋冬冬,赵淑萍. 丹参酮IIA对子宫内膜癌细胞增殖与凋亡的影响[J]. 山东大学学报 (医学版), 2022, 60(9): 53-58. |
[3] | 张振伟,李佳,陈克明. IGF2BP2/m6A/ITGA5信号轴调控肾透明细胞增殖和迁移[J]. 山东大学学报 (医学版), 2022, 60(9): 74-84. |
[4] | 刘腾,马迎春. 基于生物信息库病例分析ECT2在子宫内膜癌中的表达及临床意义[J]. 山东大学学报 (医学版), 2022, 60(8): 63-71. |
[5] | 申晓畅,孙一卿,颜磊,赵兴波. 芳基烃受体核转位因子样蛋白2在子宫内膜癌中的表达[J]. 山东大学学报 (医学版), 2022, 60(5): 74-80. |
[6] | 宋甜,付琳琳,王秋敏,杨晓,王莹,边月红,石玉华. 脂肪酸转运蛋白1在多囊卵巢综合征患者颗粒细胞中的表达[J]. 山东大学学报 (医学版), 2022, 60(2): 22-26. |
[7] | 亓梦雨,周敏然,孙洺山,李世洁,陈春燕. T大颗粒淋巴细胞白血病合并原发性骨髓纤维化1例[J]. 山东大学学报 (医学版), 2022, 60(2): 118-120. |
[8] | 李卉,姜朝阳,刘岩,张曼. 组蛋白去乙酰化酶SIRT1调控氧化低密度脂蛋白诱导巨噬细胞凋亡的表达[J]. 山东大学学报 (医学版), 2022, 60(1): 6-12. |
[9] | 王芳,陈华,商丽红,李茹月,李咏梅,杨玉娥,哈春芳. U0126对子宫内膜异位症大鼠MEK/ERK/NF-κB通路及增殖侵袭的影响[J]. 山东大学学报 (医学版), 2021, 59(9): 148-154. |
[10] | 卢游,且迪,伍晋辉,杨凡. 干预Sonic Hedgehog信号通路对宫内发育迟缓新生大鼠学习记忆能力的影响[J]. 山东大学学报 (医学版), 2021, 59(5): 82-89. |
[11] | 王正阳,夏艳,师凯旋,陶琨,王小杰. 曲美替尼在卵巢癌中对PAX8的表达作用[J]. 山东大学学报 (医学版), 2021, 59(10): 23-29. |
[12] | 杜甜甜,李娟,赵颖慧,段伟丽,王景,王允山,杜鲁涛,王传新. 长链非编码RNA LINC02474在结直肠癌中的表达特征及对细胞增殖的影响[J]. 山东大学学报 (医学版), 2021, 59(10): 57-67. |
[13] | 孙薏丰,高玉,梁永媛,高杨. CPLX2在30例肝癌组织的表达及其对体外细胞增殖与侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(9): 34-39. |
[14] | 李涵,付婷婷,张磊,延冰,孙涛,郭峰,尹晓. 过氧化物酶增殖物激活受体γ激动剂对24例肥胖症患者米色脂肪细胞分化的影响[J]. 山东大学学报 (医学版), 2020, 1(9): 8-13. |
[15] | 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24-31. |
|