Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (10): 13-19.doi: 10.6040/j.issn.1671-7554.0.2020.0891

• Special Issue on "Spatio-temporal Dynamics Analysis, Risk Assessment and Emergency Management for COVID-19 Epidemic" • Previous Articles     Next Articles

Application of geographic information system in the control of COVID-19 epidemic

Xiujun LI1,*(),Xinlou LI2,Kun LIU3,Xiaobo ZHAO2,Meng MA4,Bo SUN2   

  1. 1. Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
    2. Department of Medical Research, PLA Stragetic Support Force Characteristic Medical Center, Key Laboratory of Environmental Sense Organ Stress and Health of the Ministry of Environmental Protection, Beijing 100101, China
    3. Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an 710032, Shaanxi, China
    4. The 32022 Force of PLA, Wuhan 430072, Hubei, China
  • Received:2020-05-31 Online:2020-10-01 Published:2020-10-08
  • Contact: Xiujun LI E-mail:xjli@sdu.edu.cn

Abstract:

Since the outbreak of coronavirus disease 2019 (COVID-19) epidemic, the geographic information system (GIS) has played an important role in explaining the epidemic distribution, characteristics of regional transmission, risk assessment, and early prediction and warning, which greatly helped the disease control and prevention. In this study, the application of GIS in COVID-19 prevention and control was reviewed, hoping to provide reference for future improvement in the prevention and control measures.

Key words: Coronavirus disease 2019, Geographic information system, Spatial analysis, Risk assessment

CLC Number: 

  • R181.3
1 陈述彭, 鲁学军, 周成虎. 地理信息系统导论[M]. 北京: 科学出版社, 1999.
2 李建松. 地理信息系统原理[M]. 武汉: 武汉大学出版社, 2006.
3 白尧, 刘昆, 谷旭, 等. 陕西省2009-2013年手足口病疫情时空流行特征分析[J]. 中华流行病学杂志, 2018, 39 (9): 1152- 1158.
BAI Yao , LIU Kun , GU Xu , et al. Analysis on the spatial-temporal characteristics of hand-foot-mouth disease in Shaanxi province, 2009-2013[J]. Chinese Journal of Epidemiology, 2018, 39 (9): 1152- 1158.
4 Fang LQ , Li XL , Liu K , et al. Mapping spread and risk of avian influenza A (H7N9) in China[J]. Sci Rep, 2013, 3: 2722.
doi: 10.1038/srep02722
5 Fang LQ , de Vlas SJ , Feng D , et al. Geographical spread of SARS in mainland China[J]. Trop Med Int Health, 2009, 14 (s1): 14- 20.
6 刘昆, 李新楼, 邵中军. 空间流行病学在疾病预防控制工作中发挥着重要作用[J]. 中华流行病学杂志, 2018, 39 (9): 1143- 1145.
LIU Kun , LI Xinlou , SHAO Zhongjun . Spatial epidemiology plays an important role in control and prevention of diseases[J]. Chinese Journal of Epidemiology, 2018, 39 (9): 1143- 1145.
7 汤诚, 朱帅, 陈肖肖, 等. 1990-2014年徐州地区布加综合征空间分布特征和空间自相关分析研究[J]. 中国全科医学, 2019, 22 (33): 4142- 4146.
TANG Cheng , ZHU Shuai , CHEN Xiaoxiao , et al. Spatial Distribution Characteristics and Spatial Autocorrelation Analysis of Budd-Chiari Syndrome in Xuzhou City from 1990 to 2014[J]. Chinese General Practice, 2019, 22 (33): 4142- 4146.
8 Liu L , Zhao X , Yin F , et al. Spatio-temporal clustering of hand, foot and mouth disease at the county level in Sichuan province, China, 2008-2013[J]. Epidemiol Infect, 2015, 143 (4): 831- 838.
doi: 10.1017/S0950268814001587
9 Li R , Cheng S , Luo C , et al. Epidemiological Characteristics and Spatial-Temporal Clusters of Mumps in Shandong Province, China, 2005-2014[J]. Sci Rep, 2017, 7: 46328.
doi: 10.1038/srep46328
10 Gui J , Liu Z , Zhang T , et al. Epidemiological Characteristics and Spatial-Temporal Clusters of Hand, Foot, and Mouth Disease in Zhejiang Province, China, 2008-2012[J]. PLoS One, 2015, 10 (9): e139109.
doi: 10.1371/journal.pone.0139109.eCollection2015
11 Samphutthanon R , Tripathi N , Ninsawat S , et al. Spatio-Temporal Distribution and Hotspots of Hand, Foot and Mouth Disease (HFMD) in Northern Thailand[J]. International Journal of Environmental Research and Public Health, 2014, 11 (1): 312- 336.
12 Q Li , X Guan , P Wu , et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia[J]. N Engl J Med, 2020, 382 (13): 1199- 1207.
doi: 10.1056/NEJMoa2001316
13 Pan A , Liu L , Wang C , et al. Association of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China[J]. JAMA, 2020, 323 (19): 1915- 1923.
doi: 10.1001/jama.2020.6130
14 Wu JT , Leung K , Leung GM . Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China:a modelling study[J]. Lancet, 2020, 395 (10225): 689- 697.
doi: 10.1016/S0140-6736(20)30260-9
15 丁克琴,彭志行,鲍昌俊,等. GIS及空间分析技术在传染病流行病学中的应用[C]//华东地区第十次流行病学学术会议暨华东地区流行病学学术会议20周年庆典论文汇编. 2010.
16 中国疾病预防控制中心新型冠状病毒肺炎应急响应机制流行病学组.新型冠状病毒肺炎流行病学特征分析[J].中华流行病学杂志, 2020, 41(2): 145-151.
Epidemiology Working Group for NCIP Epidemic Response. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China[J]. Chinese Journal of Epidemiology, 2020, 41(2): 145-151.
17 苏理云, 郭雯. 中国各省新型冠状病毒肺炎累计确诊人数的空间聚集及时空格局演变分析[J]. 重庆理工大学学报(自然科学版), 2020, 34 (4): 51- 58, 65.
SU Liyun , GUO Wen . Spatial Aggregation and Spatial-Temporal Pattern of Provincial Cumulative Confirmed Count of Novel Coronavirus Pneumonia (COVID-19) in China[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34 (4): 51- 58, 65.
18 Yang W , Deng M , Li C , et al. Spatio-Temporal Patterns of the 2019-nCoV Epidemic at the County Level in Hubei Province, China[J]. Int J Environ Res Public Health, 2020, 17 (7): 2563.
doi: 10.3390/ijerph17072563
19 Fan J , Liu X , Pan W , et al. Epidemiology of Coronavirus Disease in Gansu Province, China, 2020[J]. Emerg Infect Dis, 2020, 26 (6): 1257- 1265.
doi: 10.3201/eid2606.200251
20 国家卫生健康委员会和各省卫生健康委员会.新型冠状病毒肺炎疫情分布[EB/OL]. (2020-01-26)[2020-07-01]. http://2019ncov.chinacdc.cn.
21 Desjardins MR , Hohl A , Delmelle EM . Rapid surveillance of COVID-19 in the United States using a prospective space-time scan statistic:Detecting and evaluating emerging clusters[J]. Appl Geogr, 2020, 118: 102202.
doi: 10.1016/j.apgeog.2020.102202
22 Lakhani A . Which Melbourne Metropolitan Areas Are Vulnerable to COVID-19 Based on Age, Disability, and Access to Health Services? Using Spatial Analysis to Identify Service Gaps and Inform Delivery[J]. J Pain Symptom Manage, 2020, 60 (1): e41- e44.
doi: 10.1016/j.jpainsymman.2020.03.041
23 Hart OE , Halden RU . Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally:Feasibility, economy, opportunities and challenges[J]. Sci Total Environ, 2020, 730: 138875.
doi: 10.1016/j.scitotenv.2020.138875
24 Kamel Boulos MN , Geraghty EM . Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) epidemic and associated events around the world:how 21st century GIS technologies are supporting the global fight against outbreaks and epidemics[J]. Int J Health Geogr, 2020, 19 (1): 8.
doi: 10.1186/s12942-020-00202-8
25 环球网.意大利政府推出新冠肺炎患者密切接触者追踪手机App[ER/OL].(2020-04-17)[2020-05-07]. https://www.sohu.com/a/388833094_162522.
26 Ogen Y . Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality[J]. Sci Total Environ, 2020, 726: 138605. Ogen Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality[J]. Sci Total Environ, 2020, 726:138605. doi:https://doi.org/10.1016/j.scitotenv.2020.138605.
doi: 10.1016/j.scitotenv.2020.138605
27 Liu K , Ai S , Song S , et al. Population movement, city closure in Wuhan and geographical expansion of the 2019-nCoV pneumonia infection in China in January 2020[J]. Clin Infect Dis, 2020, 17: ciaa 422.
doi: 10.1093/cid/ciaa422
28 Fan C , Liu L , Guo W , et al. Prediction of epidemic spread of the 2019 novel coronavirus driven by spring festival transportation in China:a population-based study[J]. Int J Environ Res Public Health, 2020, 17 (5): 1679.
doi: 10.3390/ijerph17051679
29 Guliyev H . Determining the spatial effects of COVID-19 using the spatial panel data model[J]. Spat Stat, 2020, 38: 100443.
doi: 10.1016/j.spasta.2020.100443
30 Mollalo A , Vahedi B , Rivera KM . GIS-based spatial modeling of COVID-19 incidence rate in the continental United States[J]. Sci Total Environ, 2020, 728: 138884.
doi: 10.1016/j.scitotenv.2020.138884
31 Chan JF , Yuan S , Kok KH , et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission:a study of a family cluster[J]. Lancet, 2020, 395 (10223): 514- 523.
doi: 10.1016/S0140-6736(20)30154-9
32 Yu P , Zhu J , Zhang Z , et al. A familial cluster of infection associated with the 2019 novel coronavirus indicating possible person-to-person transmission during the incubation period[J]. J Infect Dis, 2020, 221 (11): 1757- 1761.
doi: 10.1093/infdis/jiaa077
33 胡建雄, 何冠豪, 刘涛, 等. 新型冠状病毒肺炎疫情初期湖北省输出风险评估[J]. 中华预防医学杂志, 2020, 54 (4): 362- 366.
HU Jianxiong , HE Guanhao , LIU Tao , et al. Risk assessment of exported risk of novel coronavirus pneumonia from Hubei Province[J]. Chinese Journal of Preventive Medicine, 2020, 54 (4): 362- 366.
34 Chen ZL , Zhang Q , Lu Y , et al. Distribution of the COVID-19 epidemic and correlation with population emigration from Wuhan, China[J]. Chin Med J (Engl), 2020, 133 (9): 1044- 1050.
doi: 10.1097/CM9.0000000000000782
35 城市象限.哪些城市的新型肺炎疫情可能被低估|人流迁徙大数据+SARS传播路径[ER/OL]. (2020-01-22)[2020-05-07]. http://www.cbdio.com/BigData/2020-01/22/content_6154294.htm.
36 澎湃新闻.疫情之下,数据的100种表达[ER/OL]. (2020-03-26)[2020-05-07]. https://tech.sina.com.cn/roll/2020-03-26/doc-iimxyqwa3236669.shtml.
37 四川省人民政府.图解:四川根据疫情状况划分四类地区实施分区分类防控[ER/OL]. (2020-02-06)[2020-05-07]. http://www.sc.gov.cn/10462/10464/13298/13300/2020/2/6/af308a1364b541f796c3623786607187.shtml.
38 科技日报.抗疫战场上,大数据与病毒的殊死较量[ER/OL]. (2020-02-17)[2020-05-07]. https://tech.gmw.cn/2020-02/17/content_33561059.htm.
39 Zhao S , Zhuang Z , Ran J , et al. The association between domestic train transportation and novel coronavirus (2019-nCoV) outbreak in China from 2019 to 2020:A data-driven correlational report[J]. Travel Medicine and Infectious Disease, 2020, 33: 101568.
doi: 10.1016/j.tmaid.2020.101568
40 第一财经.离开武汉的500多万人都去了哪里?大数据告诉你[ER/OL]. (2020-01-26)[2020-05-07]. https://m.yicai.com/news/100481655.html?from=timeline&isappinstalled=0.
41 刘勇, 杨东阳, 董冠鹏, 等. 河南省新冠肺炎疫情时空扩散特征与人口流动风险评估——基于1243例病例报告的分析[J]. 经济地理, 2020, 40 (3): 24- 32.
LIU Yong , YANG Dongyong , DONG Guanpeng , et al. The spatio-temporal spread characteristics of 2019 novel coronavirus pneumonia and risk assessment based on population movement in henan province:analysis of 1243 individual case reports[J]. Economic Geography, 2020, 40 (3): 24- 32.
42 深圳特区报.深圳科研力量联合研发"黑科技" 50米内遇高危对象可报警[ER/OL]. (2020-03-03)[2020-05-07]. http://sz.people.com.cn/n2/2020/0303/c202846-33844806.html.
43 中国科学院地理科学与资源研究所.地理科学与资源研究所积极开展新型冠状病毒肺炎疫情防控及科技支撑工作[ER/OL]. (2020-02-13)[2020-05-07]. http://www.igsnrr.ac.cn/xwzx/zhxw/202002/t20200213_5499634.html.
44 Kraemer MUG , Yang CH , Gutierrez B , et al. The effect of human mobility and control measures on the COVID-19 epidemic in China[J]. Science, 2020, 368 (6490): 493- 497.
doi: 10.1126/science.abb4218
45 冯明翔,方志祥,路雄博,等.交通分析区尺度上的新型冠状病毒肺炎时空扩散推估方法:以武汉市为例[J/OL].武汉大学学报(信息科学版), 2020. 1-12[2020-04-20]. http://kns.cnki.net/kcms/detail/42.1676.TN.20200420.1449.001.html.
46 Han X , Wang J , Zhang M , et al. Using Social Media to Mine and Analyze Public Opinion Related to COVID-19 in China[J]. Int J Environ Res Public Health, 2020, 17 (8): 2788.
doi: 10.3390/ijerph17082788
47 陈兴蜀, 常天祐, 王海舟, 等. 基于微博数据的"新冠肺炎疫情"舆情演化时空分析[J]. 四川大学学报(自然科学版), 2020, 57 (2): 409- 416.
CHEN Xingshu , CHANG Tianyou , WANG Haizhou , et al. Spatial and temporal analysis on public opinion evolution of epidemic situation about novel coronavirus pneumonia based on micro-blog data[J]. Journal of Sichuan University (Natural Science Edition), 2020, 57 (2): 409- 416.
48 中科曙光.曙光云舆情分析平台发布!已通过可信云服务评估[ER/OL]. (2020-03-13)[2020-05-06]. https://www.sohu.com/a/379740076_134219.
49 Zhang H , Yang L , Li L , et al. The epidemic characteristics and spatial autocorrelation analysis of hand, foot and mouth disease from 2010 to 2015 in Shantou, Guangdong, China[J]. BMC Public Health, 2019, 19 (1): 998.
doi: 10.1186/s12889-019-7329-5
50 Xu C , Zhang X , Xiao G . Spatiotemporal decomposition and risk determinants of hand, foot and mouth disease in Henan, China[J]. Science of The Total Environment, 2019, 657: 509- 516.
doi: 10.1016/j.scitotenv.2018.12.039
51 Zhao F , Cheng S , He G , et al. Space-time clustering characteristics of tuberculosis in China, 2005-2011[J]. PLoS One, 2013, 8 (12): e83605.
doi: 10.1371/journal.pone.0083605
52 Dieng S , Ba EH , Cissé B , et al. Spatio-temporal variation of malaria hotspots in Central Senegal, 2008-2012[J]. BMC Infectious Diseases, 2020, 20 (1): 424.
doi: 10.21203/rs.2.11659/v2
53 Li J , Kolivras KN , Hong Y , et al. Spatial and Temporal Emergence Pattern of Lyme Disease in Virginia[J]. The American Journal of Tropical Medicine and Hygiene, 2014, 91 (6): 1166- 1172.
doi: 10.4269/ajtmh.13-0733
54 孙利谦, 夏聪聪, 李锐, 等. 基于空间点模式分析全球高致病性禽流感H5N1的空间分布特征[J]. 中华疾病控制杂志, 2016, 20 (6): 555- 558, 563.
SUN Liqian , XIA Congcong , LI Rui , et al. Spatial distribution characteristics of global highly pathogenic avian influenza H5N1 based on the spatial point pattern analysis[J]. Chinese Journal of Disease Control & Prevention, 2016, 20 (6): 555- 558, 563.
55 徐继承, 黄水平, 肖伟伟, 等. 中国大陆地区438例人感染H7N9禽流感空间聚集性分析[J]. 中华流行病学杂志, 2014, 35 (11): 1270- 1274.
XU Jicheng , HUANG Shuiping , XIAO Weiwei , et al. Spatial aggregation of 438 human infections with avian influenza A (H7N9) in the mainland of China[J]. Chinese Journal of Epidemiology, 2014, 35 (11): 1270- 1274.
[1] ZHANG Hui, SONG Shuxuan, LIU Jifeng, HE Zhen, SHAO Zhongjun, LIU Kun. Epidemiological characteristics of COVID-19 in Xi’an city [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 89-94.
[2] LIU Lili, JIA Yan, QI Chang, ZHU Yuchen, LI Chunyu, SHE Kaili, LIU Tingxuan, LI Xiujun. Clustering distribution of COVID-19 in Wenzhou from January to March 2020 based on spatiotemporal analysis [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 82-88.
[3] LIU Tingxuan, QI Chang, SHE Kaili, JIA Yan, ZHU Yuchen, LI Chunyu, LIU Lili, WANG Xu, ZHANG Zhihua, LI Xiujun. Epidemiological characteristics and spatial-temporal clustering of COVID-19 in Hebei Province [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 74-81.
[4] JIA Yan, LI Chunyu, LIU Lili, SHE Kaili, LIU Tingxuan, ZHU Yuchen, QI Chang, ZHANG Dandan, WANG Xu, CHEN Enfu, LI Xiujun. Epidemic characteristics and spatial analysis of COVID-19 in Zhejiang Province [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 66-73.
[5] LIU Jun, LI Huan, ZHANG Shiyu, ZHANG Peng, AI Siqi, TIAN Fei, LIN Hualiang. Risk factors of severe and critical patients with COVID-19 in Hubei, China [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 60-65.
[6] QI Chang, ZHU Yuchen, LI Chunyu, LIU Lili, ZHANG Dandan, WANG Xu, SHE Kaili, CHEN Ming, KANG Dianmin, LI Xiujun. Influence factors of COVID-19 in Shandong Province based on geographically weighted generalized linear model [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 53-59.
[7] SHE Kaili, ZHANG Dandan, QI Chang, LIU Tingxuan, JIA Yan, ZHU Yuchen, LI Chunyu, LIU Lili, WANG Xu, SU Hong, LI Xiujun. Epidemiological characteristics and incubation period of coronavirus disease 2019 in Anhui Province [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 44-52.
[8] LI Chunyu, ZHU Yuchen, QI Chang, LIU Lili, ZHANG Dandan, WANG Xu, XU Xueli, LI Xiujun. Epidemic dynamics of COVID-19 in Xinyang City, Henan Province [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 38-43.
[9] JIN Xinye, LU Zhenzhen, DING Zhongxing, CHEN Feng, PENG Zhihang. A dynamic modeling study on the effects of Wuhan traffic control and centralized quarantine measures on COVID-19 epidemic [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 25-31.
[10] XU Lijun, LIU Wenhui, LIU Yuan, LI Meixia, LUO Lei, OU Chunquan. Construction of SEIQCR epidemic model and its application in the evaluation of public health interventions on COVID-19 in Guangzhou [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 20-24.
[11] BAI Yao, CHEN Zhijun, SONG Shuxuan, HE Zhen, CHEN Baozhong, SHAO Zhongjun, LIU Kun. Investigation of a family cluster outbreak of coronavirus disease 2019 in Xian [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 95-99.
[12] WANG Ling, CAO Haixia, ZHANG Ling, ZHANG Wenna, PAN Yanping, SHI Ying, ZHANG Wei, CUI Feng. Investigation and analysis of the characteristics of a family cluster of coronavirus disease 2019 in Zibo [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 100-104.
[13] WANG Bin, BU Xuehui, KONG Xianggen, ZHANG Zhaohua, WU Anzhao, XIAO Di, JIANG Xuemei. Comparison of the clinical characteristics between 37 adults and 10 children with COVID-19 [J]. Journal of Shandong University (Health Sciences), 2020, 58(10): 112-116.
[14] WANG Jichuan, LIU Ruihong, LI Dongzhi, XUE Fuzhong. Application of the geographical weighted regression model to explore the cause of stroke [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(8): 88-94.
[15] WANG Tingting, WANG Jintao, YUAN Zhongshang, SU Ping, XUE Fuzhong. Cause-specific hazard model and its applications in health risk assessment [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 42-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 1 -6 .
[2] MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui. Effect of miR-27b-3p regulating SMAD1 on osteosarcoma cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 32 -37 .
[3] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 38 -46 .
[4] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 67 -71 .
[5] LUO Xin, HE Bing, NIE Qingsheng, HOU Zhenbo, DONG Jun, LI Yuhua, ZENG Xiangqin, LIU Wei, KONG Demin, CAO Jinfeng. Comparison of the value of mono-exponential mode and diffusion kurtosis imaging mode in grading clear cell renal cell carcinoma using magnetic resonance diffusion-weighted imaging[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 89 -95 .
[6] Di ZHANG,Meng YU,Xia LIU. A general overview of neuromodulation[J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 50 -60 .
[7] Wei ZHANG,Wenhao TAN,Yibin LI. Locmotion control of quadruped robot based on deep reinforcement learning: review and prospect[J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 61 -66 .
[8] Anjing CHEN,Xun ZHANG. The new strategies of targeting SUMOylation in the treatment of glioma[J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 88 -94 .
[9] ZHANG Hongbin, ZHAO Hanhui, WANG Suxia, ZHOU Peng, HE Qingqing, WANG Yanqun, DING Weiping, LIU Gang. Perioperative observation and postoperative risk factors of severe hypocalcemia after parathyroidectomy: a report of 303 cases[J]. Journal of Shandong University (Health Sciences), 2020, 1(9): 14 -20 .
[10] SUN Yifeng, GAO Yu, LIANG Yongyuan, GAO Yang. Expression of CPLX2 and its in vitro effects on the proliferation migration and invasion of hepatocellular carcinoma cells[J]. Journal of Shandong University (Health Sciences), 2020, 1(9): 34 -39 .