Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (8): 61-66.doi: 10.6040/j.issn.1671-7554.0.2020.0607
• Special Topic on Brain Science and Brain Like Intelligence • Previous Articles Next Articles
Wei ZHANG*(),Wenhao TAN,Yibin LI
CLC Number:
1 |
Hopfield JJ . Neural networks and physical systems with emergent collective computational abilities[J]. NAS, 1982, 79 (8): 2554- 2558.
doi: 10.1073/pnas.79.8.2554 |
2 | Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks[C]// Pereira F, Burges CJC, Bottou L. Advances in neural information processing systems. Lake Tahoe: Neural Information Processing Systems Conference, 2012: 1097-1105. |
3 |
Russakovsky O , Deng J , Su H , et al. Imagenet large scale visual recognition challenge[J]. IJCV, 2015, 115 (3): 211- 252.
doi: 10.1007/s11263-015-0816-y |
4 | Graves A, Mohamed A, Hinton G. Speech recognition with deep recurrent neural networks[C]// Krishnamurthy V, Plataniotis K. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver: IEEE, 2013: 6645-6649. |
5 | Cho K, Van Merri e ¨ nboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv: 1406.1078, 2014. |
6 | Karpathy A, Toderici G, Shetty S, et al. Large-scale video classification with convolutional neural networks[C]// Basri R, Fermuller C, Martinez A. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 1725-1732. |
7 | Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning[J]. arXiv preprint arXiv: 1312.5602, 2013. |
8 | Wu Y, Zhang W, Song K. Master-slave curriculum design for reinforcement learning[C]// Lang J. IJCAI. Stockholm: International Joint Conferences on Artificial Intelligence, 2018: 1523-1529. |
9 |
Mnih V , Kavukcuoglu K , Silver D , et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518 (7540): 529- 533.
doi: 10.1038/nature14236 |
10 |
Silver D , Huang A , Maddison CJ , et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529 (7587): 484- 489.
doi: 10.1038/nature16961 |
11 | Lillicrap TP, Hunt JJ, Pritzel A, et al. Continuous control with deep reinforcement learning[J]. arXiv preprint arXiv: 1509.02971, 2015. |
12 | Zhang J, Zhang W, Song R, et al. Grasp for stacking via deep reinforcement learning[C]// Kallio P, Burdet E. 2020 IEEE The International Conference on Robotics and Automation (ICRA), Virtual Conference: IEEE, 2020. |
13 | Duan Y, Chen X, Houthooft R, et al. Benchmarking deep reinforcement learning for continuous control[C]. // Balcan N, Weinberger K. International Conference on Machine Learning. New York City: PMLR, 2016: 1329-1338. |
14 | Gu S, Lillicrap T, Sutskever I, et al. Continuous deep Q-learning with model-based acceleration[C]// Balcan N, Weinberger K. International Conference on Machine Learning. New York City: PMLR, 2016: 2829-2838. |
15 | Hansen S. Using deep Q-learning to control optimization hyperparameters[J]. arXiv preprint arXiv: 1602.04062, 2016. |
16 | Wu Y, Rao Z, Zhang W, et al. Exploring the task cooperation in multi-goal visual navigation[C]// Hentenryck PV, Zhou ZH. Proceedings of the 28th International Joint Conference on Artificial Intelligence. Hawaii: AAAI Press, 2019: 609-615. |
17 | Andrychowicz M, Denil M, Gomez S, et al. Learning to learn by gradient descent by gradient descent[C]// Lee DD, Sugiyama M, Luxburg UV. Advances in neural information processing systems. Barcelona: Neural Information Processing Systems Conference, 2016: 3981-3989. |
18 | Oh J, Guo X, Lee H, et al. Action-conditional video prediction using deep networks in atari games[C]// Cortes C, Lawrence ND, Lee DD. Advances in neural information processing systems. Montréal: Neural Information Processing Systems Conference, 2015: 2863-2871. |
19 | Caicedo JC, Lazebnik S. Active object localization with deep reinforcement learning[C]// Ikeuchi K, Schnörr C, Sivic J. Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 2488-2496. |
20 |
Watkins CJCH , Dayan P . Q-learning[J]. Machine Learning, 1992, 8 (3-4): 279- 292.
doi: 10.1007/BF00992698 |
21 | Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double q-learning[C]// Schuurmans D, Wellman M. Thirtieth AAAI conference on Artificial Intelligence. Phoenix: AAAI Press, 2016. |
22 | Hausknecht M, Stone P. Deep recurrent Q-learning for partially observable mdps[C]// Bonet B, Koenig S. 2015 AAAI Fall Symposium Series. Austin: AAAI Press, 2015. |
23 | Sutton RS, McAllester DA, Singh SP, et al. Policy gradient methods for reinforcement learning with function approximation[C]// Leen TK, Dietterich TG, Tresp V. Advances in neural information processing systems. Denver: Neural Information Processing Systems Conference, 2000: 1057-1063. |
24 | Mnih V, Badia AP, Mirza M, et al. Asynchronous methods for deep reinforcement learning[C]// Balcan N, Weinberger K. International Conference on Machine Learning. New York City: PMLR, 2016: 1928-1937. |
25 | Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv: 1707.06347, 2017. |
26 | Fujimoto S, Van Hoof H, Meger D. Addressing function approximation error in actor-critic methods[J]. arXiv preprint arXiv: 1802.09477, 2018. |
27 |
Jenelten F , Hwangbo J , Tresoldi F , et al. Dynamic locomotion on slippery ground[J]. IEEE Robotics and Automation Letters, 2019, 4 (4): 4170- 4176.
doi: 10.1109/LRA.2019.2931284 |
28 | Jin B, Sun C, Zhang A, et al. Joint torque estimation toward dynamic and compliant control for gear-driven torque sensorless quadruped robot[C]// Arai F. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). MACAO: IEEE, 2019: 4630-4637. |
29 | Peng XB , Abbeel P , Levine S , et al. Deepmimic: example-guided deep reinforcement learning of physics-based character skills[J]. ACM Transactions on Graphics (TOG), 2018, 37 (4): 1- 14. |
30 |
Hwangbo J , Lee J , Dosovitskiy A , et al. Learning agile and dynamic motor skills for legged robots[J]. Science Robotics, 2019, 4 (26): eaau5872.
doi: 10.1126/scirobotics.aau5872 |
31 | Haarnoja T, Zhou A, Abbeel P, et al. Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor[J]. arXiv preprint arXiv: 1801.01290, 2018. |
32 | Tan J, Zhang T, Coumans E, et al. Sim-to-real: learning agile locomotion for quadruped robots[J]. arXiv preprint arXiv: 1804.10332, 2018. |
33 |
Hwangbo J , Lee J , Hutter M . Per-contact iteration method for solving contact dynamics[J]. IEEE Robotics and Automation Letters, 2018, 3 (2): 895- 902.
doi: 10.1109/LRA.2018.2792536 |
34 | Haarnoja T, Zhou A, Hartikainen K, et al. Soft actor-critic algorithms and applications[J]. arXiv preprint arXiv: 1812.05905, 2018. |
35 | Jain D, Iscen A, Caluwaerts K. Hierarchical reinforcement learning for quadruped locomotion[J]. arXiv preprint arXiv: 1905.08926, 2019. |
36 | Iscen A, Caluwaerts K, Tan J, et al. Policies modulating trajectory generators[J]. arXiv preprint arXiv: 1910.02812, 2019. |
37 | Frans K, Ho J, Chen X, et al. Meta learning shared hierarchies[J]. arXiv preprint arXiv: 1710.09767, 2017. |
38 | Kolvenbach H, Hampp E, Barton P, et al. Towards jumping locomotion for quadruped robots on the moon[C]// Arai F. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). MACAO : IEEE, 2019: 5459-5466. |
39 | Saputra AA, Toda Y, Takesue N, et al. A novel capabilities of quadruped robot moving through vertical ladder without handrail support[C]// Arai F. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). MACAO: IEEE, 2019: 1448-1453. |
40 | Lee YH, Lee YH, Lee H, et al. Whole-body motion and landing force control for quadrupedal stair climbing[C]// Arai F. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). MACAO: IEEE, 2019: 4746-4751. |
41 |
Jenelten F , Hwangbo J , Tresoldi F , et al. Dynamic locomotion on slippery ground[J]. IEEE Robotics and Automation Letters, 2019, 4 (4): 4170- 4176.
doi: 10.1109/LRA.2019.2931284 |
42 | Ha S, Xu P, Tan Z, et al. Learning to walk in the real world with minimal human effort[J]. arXiv preprint arXiv: 2002.08550, 2020. |
[1] | WU Qiang, HE Zekun, LIU Ju, CUI Xiaomeng, SUN Shuang, SHI Wei. A research on multi-modal MRI analysis based on machine learning for brain glioma [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 81-87. |
|