Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (8): 50-60.doi: 10.6040/j.issn.1671-7554.0.2020.0602

• Special Topic on Brain Science and Brain Like Intelligence • Previous Articles     Next Articles

A general overview of neuromodulation

Di ZHANG1,2,*(),Meng YU1,2,Xia LIU1,2   

  1. 1. Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China
    2. Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, Shandong, China
  • Received:2020-04-15 Online:2020-08-07 Published:2020-08-07
  • Contact: Di ZHANG E-mail:dizhang@sdu.edu.cn

Abstract:

Neuromodulation refers to a series of biomedical engineering techniques which normalize or modulate the function of the nervous system through invasive or non-invasive delivery of physical or chemical stimulus. In the past thirty years, with the in-depth understanding of the nervous system and its mechanisms of action, as well as the rapidly developing modern techniques, neuromodulation has evolved from basic concept to clinical applications. At the same time, new concepts and alternative methods of neuromodulation are constantly being innovated, tested and put into practice. The advancing of neuromodulation techniques will not only provide new tools for basic neuroscience research but also offer novel therapeutic options for neurological and psychiatric disorders. In this overview, we will briefly introduce the current status of different types of neuromodulation techniques, including the clinical applications, underlying mechanisms of their therapeutic effects and advantages/disadvantages, as well as the prospects for the future.

Key words: Neuromodulation, Neuroplasticity, Neuropsychiatric disorders

CLC Number: 

  • R318

Fig.1

Types and applications of neuromodulation techniques A: Therapeutic applications of neuromodulation techniques. Neuromodulation techniques were widely used in treatment of neurological and psychiatric disorders, such as treatment-resistant depression, epilepsy and chronic pain, etc; B: Applications of neuromodulation techniques in medical research. Neuromodulation techniques, particularly the optogenetics and chemogenetics, were often used in the mesoscopic level of neuroscience; C: Forms of neuromodulation techniques. The introduced neuromodulation techniques in this article included magnetic, optic, electronic, chemical and ultrasonic stimulations. The neuromodulation techniques included invasive and non-invasive methods. "

1 Boyden ES , Zhang F , Bamberg E , et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nat Neurosci, 2005, 8 (9): 1263- 1268.
doi: 10.1038/nn1525
2 Nagel G , Szellas T , Huhn W , et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel[J]. Proc Natl Acad Sci U S A, 2003, 100 (24): 13940- 13945.
doi: 10.1073/pnas.1936192100
3 Váró G , Brown LS , Lakatos M , et al. Characterization of the photochemical reaction cycle of proteorhodopsin[J]. Biophys J, 2003, 84 (2 Pt 1): 1202- 1207.
4 Zhang F , Prigge M , Beyrière F , et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri[J]. Nat Neurosci, 2008, 11 (6): 631- 633.
doi: 10.1038/nn.2120
5 Berl T . Treating hyponatremia: damned if we do and damned if we don't[J]. Kidney Int, 1990, 37 (3): 1006- 1018.
doi: 10.1038/ki.1990.78
6 Gunaydin LA , Yizhar O , Berndt A , et al. Ultrafast optogenetic control[J]. Nat Neurosci, 2010, 13 (3): 387- 392.
7 Yizhar O , Fenno LE , Prigge M , et al. Neocortical excitation/inhibition balance in information processing and social dysfunction[J]. Nature, 2011, 477 (7363): 171- 178.
doi: 10.1038/nature10360
8 Muir J, Bagot RC. Optogenetics: illuminating the neural circuits of depression[M]// Wquevedo J, Carvalho AF, Zarate CA. Neurobiology of depression. Amsterdam: Elsevier, 2019: 147-157.
9 Chaudhury D , Liu H , Han MH . Neuronal correlates of depression[J]. Cell Mol Life Sci, 2015, 72 (24): 4825- 4848.
doi: 10.1007/s00018-015-2044-6
10 Chen P , Hong W . Neural Circuit Mechanisms of Social Behavior[J]. Neuron, 2018, 98 (1): 16- 30.
doi: 10.1016/j.neuron.2018.02.026
11 Ramirez S , Tonegawa S , Liu X . Identification and optogenetic manipulation of memory engrams in the hippocampus[J]. Front Behav Neurosci, 2014, 7: 226.
doi: 10.3389/fnbeh.2013.00226
12 Josselyn SA , Tonegawa S . Memory engrams: recalling the past and imagining the future[J]. Science, 2020, 367 (6473): eaaw4325.
doi: 10.1126/science.aaw4325
13 Denny CA , Lebois E , Ramirez S . From engrams to pathologies of the brain[J]. Front Neural Circuits, 2017, 11: 23.
doi: 10.3389/fncir.2017.00023
14 Stamatakis AM , Stuber GD . Optogenetic strategies to dissect the neural circuits that underlie reward and addiction[J]. Cold Spring Harb Perspect Med, 2012, 2 (11): a011924.
doi: 10.1101/cshperspect.a011924
15 Montgomery KL , Yeh AJ , Ho JS , et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice[J]. Nat Methods, 2015, 12 (10): 969- 974.
doi: 10.1038/nmeth.3536
16 Chen S , Weitemier AZ , Zeng X , et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics[J]. Science, 2018, 359 (6376): 679- 684.
doi: 10.1126/science.aaq1144
17 Zhou XX , Chung HK , Lam AJ , et al. Optical control of protein activity by fluorescent protein domains[J]. Science, 2012, 338 (6108): 810- 814.
doi: 10.1126/science.1226854
18 Idevall-Hagren O , Dickson EJ , Hille B , et al. Optogenetic control of phosphoinositide metabolism[J]. Proc Natl Acad Sci U S A, 2012, 109 (35): E2316- E2323.
doi: 10.1073/pnas.1211305109
19 Strickland D , Lin Y , Wagner E , et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology[J]. Nat Methods, 2012, 9 (4): 379- 384.
doi: 10.1038/nmeth.1904
20 Grusch M , Schelch K , Riedler R , et al. Spatio-temporally precise activation of engineered receptor tyrosine kinases by light[J]. EMBO J, 2014, 33 (15): 1713- 1726.
doi: 10.15252/embj.201387695
21 Nagaraj S , Mills E , Wong SSC , et al. Programming membrane fusion and subsequent apoptosis into mammalian cells[J]. ACS Synth Biol, 2013, 2 (4): 173- 179.
22 Taslimi A , Vrana JD , Chen D , et al. An optimized optogenetic clustering tool for probing protein interaction and function[J]. Nat Commun, 2014, 5: 4925.
doi: 10.1038/ncomms5925
23 Bonger KM , Rakhit R , Payumo AY , et al. General method for regulating protein stability with light[J]. ACS Chem Biol, 2014, 9 (1): 111- 115.
doi: 10.1021/cb400755b
24 Chen D , Gibson ES , Kennedy MJ . A light-triggered protein secretion system[J]. J Cell Biol, 2013, 201 (4): 631- 640.
doi: 10.1083/jcb.201210119
25 Motta-Mena LB , Reade A , Mallory MJ , et al. An optogenetic gene expression system with rapid activation and deactivation kinetics[J]. Nat Chem Biol, 2014, 10 (3): 196- 202.
doi: 10.1038/nchembio.1430
26 Bishop AC , Ubersax JA , Petsch DT , et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase[J]. Nature, 2000, 407 (6802): 395- 401.
doi: 10.1038/35030148
27 Cohen MS , Zhang C , Shokat KM , et al. Structural bioinformatics-based design of selective, irreversible kinase inhibitors[J]. Science, 2005, 308 (5726): 1318- 1321.
doi: 10.1126/science1108367
28 Dar AC , Das TK , Shokat KM , et al. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology[J]. Nature, 2012, 486 (7401): 80- 84.
doi: 10.1038/nature11127
29 Alexander GM , Rogan SC , Abbas AI , et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors[J]. Neuron, 2009, 63 (1): 27- 39.
doi: 10.1016/j.neuron.2009.06.014
30 Vardy E , Robinson JE , Li C , et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior[J]. Neuron, 2015, 86 (4): 936- 946.
doi: 10.1016/j.neuron.2015.03.065
31 Lerchner W , Xiao C , Nashmi R , et al. Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl- channel[J]. Neuron, 2007, 54 (1): 35- 49.
doi: 10.1016/j.neuron.2007.02.030
32 Magnus CJ , Lee PH , Atasoy D , et al. Chemical and genetic engineering of selective ion channel-ligand interactions[J]. Science, 2011, 333 (6047): 1292- 1296.
doi: 10.1126/science.1206606
33 Roth BL . DREADDs for neuroscientists[J]. Neuron, 2016, 89 (4): 683- 694.
doi: 10.1016/j.neuron.2016.01.040
34 Gomez JL , Bonaventura J , Lesniak W , et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine[J]. Science, 2017, 357 (6350): 503- 507.
doi: 10.1126/science.aan2475
35 Christine CW , Bankiewicz KS , Wan Laar AS , et al. Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for parkinson's disease[J]. Ann Neurol, 2019, 85 (5): 704- 714.
doi: 10.1002/ana.25450
36 Drew L . Gene therapy targets epilepsy[J]. Nature, 2018, 564 (7735): S10- S11.
doi: 10.1038/d41586-018-07644-y
37 Sehara Y , Fujimoto KI , Ikeguchi K , et al. Persistent expression of dopamine-synthesizing enzymes 15 years after gene transfer in a primate model of parkinson's disease[J]. Hum Gene Ther Clin Dev, 2017, 28 (2): 74- 79.
doi: 10.1089/humc.2017.010
38 Chan KY , Jang MJ , Yoo BB , et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems[J]. Nat Neurosci, 2017, 20 (8): 1172- 1179.
doi: 10.1038/nn.4593
39 Lipsman N , Meng Y , Bethune AJ , et al. Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound[J]. Nat Commun, 2018, 9 (1): 2336.
doi: 10.1038/s41467-018-04529-6
40 Szablowski JO , Lee-Gosselin A , Lue B , et al. Acoustically targeted chemogenetics for the non-invasive control of neural circuits[J]. Nat Biomed Eng, 2018, 2 (7): 475- 484.
doi: 10.1038/s41551-018-0258-2
41 Magnus CJ , Lee PH , Bonaventura J , et al. Ultrapotent chemogenetics for research and potential clinical applications[J]. Science, 2019, 364 (6436): eaav5282.
doi: 10.1126/science.aav5282
42 Weir GA , Middleton SJ , Clark AJ , et al. Using an engineered glutamate-gated chloride channel to silence sensory neurons and treat neuropathic pain at the source[J]. Brain, 2017, 140 (10): 2570- 2585.
doi: 10.1093/brain/awx201
43 Barker AT , Jalinous R , Freeston IL . Non-invasive magnetic stimulation of human motor cortex[J]. Lancet, 1985, 1 (8437): 1106- 1107.
44 Kujirai T , Caramia MD , Rothwell JC , et al. Corticocortical inhibition in human motor cortex[J]. J Physiol, 1993, 471: 501- 519.
doi: 10.1113/jphysiol.1993.sp019912
45 Pascual-Leone A , Valls-Solé J , Wassermann EM , et al. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex[J]. Brain, 1994, 117 (Pt 4): 847- 858.
46 Ge R , Downar J , Blumberger D , et al. Long-term effects of rTMS on the functional brain networks in treatment-resistant depression[J]. Brain Stimulation, 2019, 12 (2): 470.
doi: 10.1016/j.brs.2018.12.531
47 Peng Z , Zhou C , Xue S , et al. Mechanism of repetitive transcranial magnetic stimulation for depression[J]. Shanghai Arch Psychiatry, 2018, 30 (2): 84- 92.
48 Chervyakov AV , Chernyavsky AY , Sinitsyn DO , et al. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation[J]. Front Hum Neurosci, 2015, 9: 303.
doi: 10.3389/fnhum.2015.00303
49 George MS , Wassermann EM , Kimbrell TA , et al. Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: a placebo-controlled crossover trial[J]. Am J Psychiatry, 1997, 154 (12): 1752- 1756.
doi: 10.1176/ajp.154.12.1752
50 Klein E , Kreinin I , Chistyakov A , et al. Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double-blind controlled study[J]. Arch Gen Psychiatry, 1999, 56 (4): 315- 320.
doi: 10.1001/archpsyc.56.4.315
51 Rush AJ , Trivedi MH , Wisniewski SR , et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report[J]. Am J Psychiatry, 2006, 163 (11): 1905- 1917.
doi: 10.1176/ajp.2006.163.11.1905
52 Hunter AM , Minzenberg MJ , Cook IA , et al. Concomitant medication use and clinical outcome of repetitive Transcranial Magnetic Stimulation (rTMS) treatment of Major Depressive Disorder[J]. Brain Behav, 2019, 9 (5): e01275.
doi: 10.1002/brb3.1275
53 Fitzgerald PB , Hoy KE , Elliot D , et al. Exploring alternative rTMS strategies in non-responders to standard high frequency left-sided treatment: a switching study[J]. J Affect Disord, 2018, 232: 79- 82.
doi: 10.1016/j.jad.2018.02.016
54 Fadini T , Matthäus L , Rothkegel H , et al. H-coil: induced electric field properties and input/output curves on healthy volunteers, comparison with a standard figure-of-eight coil[J]. Clin Neurophysiol, 2009, 120 (6): 1174- 1182.
doi: 10.1016/j.clinph.2009.02.176
55 Kaster TS , Daskalakis ZJ , Noda Y , et al. Efficacy, tolerability, and cognitive effects of deep transcranial magnetic stimulation for late-life depression: a prospective randomized controlled trial[J]. Neuropsychopharmacology, 2018, 43 (11): 2231- 2238.
doi: 10.1038/s41386-018-0121-x
56 Tavares DF , Myczkowski ML , Alberto RL , et al. Treatment of bipolar depression with deep TMS: results from a double-blind, randomized, parallel group, sham-controlled clinical trial[J]. Neuropsychopharmacology, 2017, 42 (13): 2593- 2601.
doi: 10.1038/npp.2017.26
57 Keller MB , McCullough JP , Klein DN , et al. A comparison of nefazodone, the cognitive behavioral-analysis system of psychotherapy, and their combination for the treatment of chronic depression[J]. N Engl J Med, 2000, 342 (20): 1462- 1470.
doi: 10.1056/NEJM200005183422001
58 Carpenter LL , Janicak PG , Aaronson ST , et al. Transcranial magnetic stimulation (TMS) for major depression: a multisite, naturalistic, observational study of acute treatment outcomes in clinical practice[J]. Depress Anxiety, 2012, 29 (7): 587- 596.
doi: 10.1002/da.21969
59 Cooper YA , Pianka ST , Alotaibi NM , et al. Repetitive transcranial magnetic stimulation for the treatment of drug-resistant epilepsy: a systematic review and individual participant data meta-analysis of real-world evidence[J]. Epilepsia Open, 2018, 3 (1): 55- 65.
60 Dionisio A , Duarte IC , Patrício M , et al. The use of repetitive transcranial magnetic stimulation for stroke rehabilitation: a systematic review[J]. J Stroke Cerebrovasc Dis, 2018, 27 (1): 1- 31.
doi: 10.1016/j.jstrokecerebrovasdis.2017.09.008
61 Bates KA , Rodger J . Repetitive transcranial magnetic stimulation for stroke rehabilitation-potential therapy or misplaced hope?[J]. Restor Neurol Neurosci, 2015, 33 (4): 557- 569.
62 Nardone R , Sebastianelli L , Versace V , et al. Effects of repetitive transcranial magnetic stimulation in subjects with sleep disorders[J]. Sleep Med, 2020, 71: 113- 121.
doi: 10.1016/j.sleep.2020.01.028
63 Enticott PG , Fitzgibbon BM , Kennedy HA , et al. A double-blind, randomized trial of deep repetitive transcranial magnetic stimulation (rTMS) for autism spectrum disorder[J]. Brain Stimul, 2014, 7 (2): 206- 211.
doi: 10.1016/j.brs.2013.10.004
64 Stanley SA , Gagner JE , Damanpour S , et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice[J]. Science, 2012, 336 (6081): 604- 608.
doi: 10.1126/science.1216753
65 Stanley SA , Kelly L , Latcha KN , et al. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism[J]. Nature, 2016, 531 (7596): 647- 650.
doi: 10.1038/nature17183
66 Wheele MA , Smith CJ , Ottolini M , et al. Genetically targeted magnetic control of the nervous system[J]. Nat Neurosci, 2016, 19 (5): 756- 761.
doi: 10.1038/nn.4265
67 Chen R , Romero G , Christiansen MG , et al. Wireless magnetothermal deep brain stimulation[J]. Science, 2015, 347 (6229): 1477- 1480.
doi: 10.1126/science.1261821
68 Rao S , Chen R , LaRocca AA , et al. Remotely controlled chemomagnetic modulation of targeted neural circuits[J]. Nat Nanotechnol, 2019, 14 (10): 967- 973.
doi: 10.1038/s41565-019-0521-z
69 Mazars G , Merienne L , Cioloca C . Treatment of certain types of pain with implantable thalamic stimulators[J]. Neurochirurgie, 1974, 20 (2): 117- 24.
70 Lozano AM , Eltahawy H . How does DBS work?[J]. Suppl Clin Neurophysiol, 2004, 57: 733- 736.
doi: 10.1016/s1567-424x(09)70414-3
71 Maciunas RJ , Maddux BN , Riley DE , et al. Prospective randomized double-blind trial of bilateral thalamic deep brain stimulation in adults with Tourette syndrome[J]. J Neurosurg, 2007, 107 (5): 1004- 1014.
doi: 10.3171/JNS-07/11/1004
72 Boon P , Vonck K , De Herdt V , et al. Deep brain stimulation in patients with refractory temporal lobe epilepsy[J]. Epilepsia, 2007, 48 (8): 1551- 1560.
doi: 10.1111/j.1528-1167.2007.01005.x
73 Frank F , Frank G , Gaist G , et al. [Deep brain stimulation in the treatment of chronic pain syndromes][J]. Riv Neurobiol, 1982, 28 (3-4): 309- 316.
74 Lipsman N , Neimat JS , Lozano AM . Deep brain stimulation for treatment-refractory obsessive-compulsive disorder: the search for a valid target[J]. Neurosurgery, 2007, 61 (1): 1- 11.
doi: 10.1227/01.neu.0000279719.75403.f7
75 Schlaepfer TE , Cohen MX , Frick C , et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression[J]. Neuropsychopharmacology, 2008, 33 (2): 368- 377.
doi: 10.1038/sj.npp.1301408
76 Lozano AM , Fosdick L , Chakravarty MM , et al. A phase II study of fornix deep brain stimulation in mild Alzheimer's disease[J]. J Alzheimers Dis, 2016, 54 (2): 777- 787.
doi: 10.3233/JAD-160017
77 Lee KH, Mosier EM, Blaha CD. Mechanisms of action of deep brain stimulation: a review[M]// Krames ES, Peckham PH, Rezai AR. Neuromodulation, 2018: 193-210.
78 Gaskell WH . The electrical changes in the quiescent cardiac muscle which accompany stimulation of the vagus nerve[J]. J Physiol, 1886, 7 (5-6): 451- 452.
doi: 10.1113/jphysiol.1886.sp000235
79 Penry JK , Dean JC . Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results[J]. Epilepsia, 1990, 31 (Suppl 2): S40- S43.
80 George MS , Rush AJ , Marangell LB , et al. A one-year comparison of vagus nerve stimulation with treatment as usual for treatment-resistant depression[J]. Biol Psychiatry, 2005, 58 (5): 364- 373.
doi: 10.1016/j.biopsych.2005.07.028
81 Rush AJ , Marangell LB , Sackeim HA , et al. Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial[J]. Biol Psychiatry, 2005, 58 (5): 347- 354.
doi: 10.1016/j.biopsych.2005.05.025
82 Conway CR , Xiong W . The mechanism of action of vagus nerve stimulation in treatment-resistant depression: current conceptualizations[J]. Psychiatr Clin North Am, 2018, 41 (3): 395- 407.
doi: 10.1016/j.psc.2018.04.005
83 Vonck KEJ, Larsen LE. Vagus nerve stimulation[M]// Krames ES, Peckham PH, Rezai AR. Neuromodulation, 2018: 211-220.
84 Nitsche MA , Paulus W . Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation[J]. J Physiol, 2000, 527 (Pt 3): 633- 639.
85 Monte-Silva K , Kuo MF , Hessenthaler S , et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation[J]. Brain Stimul, 2013, 6 (3): 424- 432.
86 Kronberg G , Bridi M , Abel T , et al. Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects[J]. Brain Stimul, 2017, 10 (1): 51- 58.
87 Unal G, Bikson M. Transcranial direct current stimulation (tDCS)[M]// Krames ES, Peckham PH, Rezai AR. Neuromodulation, 2018: 1589-1610.
88 Elias WJ , Lipsman N , Ondo WG , et al. A randomized trial of focused ultrasound thalamotomy for essential tremor[J]. N Engl J Med, 2016, 375 (8): 730- 739.
doi: 10.1056/NEJMoa1600159
89 Na YC , Chang WS , Jung HH , et al. Unilateral magnetic resonance-guided focused ultrasound pallidotomy for Parkinson disease[J]. Neurology, 2015, 85 (6): 549- 551.
doi: 10.1212/WNL.0000000000001826
90 Jung HH , Kim SJ , Roh D , et al. Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-of-concept study[J]. Mol Psychiatry, 2015, 20 (10): 1205- 1211.
doi: 10.1038/mp.2014.154
91 Coluccia D , Fandino J , Schwyzer L , et al. First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound[J]. J Ther Ultrasound, 2014, 2: 17.
doi: 10.1186/2050-5736-2-17
92 Tyler WJ . The mechanobiology of brain function[J]. Nat Rev Neurosci, 2012, 13 (12): 867- 878.
93 Tufail Y , Matyushov A , Baldwin N , et al. Transcranial pulsed ultrasound stimulates intact brain circuits[J]. Neuron, 2010, 66 (5): 681- 694.
doi: 10.1016/j.neuron.2010.05.008
94 Fini M , Tyler WJ . Transcranial focused ultrasound: a new tool for non-invasive neuromodulation[J]. Int Rev Psychiatry, 2017, 29 (2): 168- 177.
doi: 10.1080/09540261.2017.1302924
95 Deffieux T , Younan Y , Wattiez N , et al. Low-intensity focused ultrasound modulates monkey visuomotor behavior[J]. Curr Biol, 2013, 23 (23): 2430- 2433.
doi: 10.1016/j.cub.2013.10.029
96 Panczykowski DM , Monaco EA 3rd , Friedlander RM . Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans[J]. Neurosurgery, 2014, 74 (6): N8.
doi: 10.1227/NEU.00000000-00000365
97 Lee W , Kim H , Jung Y , et al. Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex[J]. Sci Rep, 2015, 5: 8743.
doi: 10.1038/srep08743
98 Lee W , Kim HC , Jung Y , et al. , Transcranial focused ultrasound stimulation of human primary visual cortex[J]. Sci Rep, 2016, 6: 34026.
doi: 10.1038/srep34026
99 Chu PC , Chai WY , Tsai CH , et al. Focused ultrasound-induced blood-brain barrier opening: association with mechanical index and cavitation index analyzed by dynamic contrast-enhanced magnetic-resonance imaging[J]. Sci Rep, 2016, 6: 33264.
doi: 10.1038/srep-33264
100 Airan RD , Meyer RA , Ellens NPK , et al. Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions[J]. Nano Lett, 2017, 17 (2): 652- 659.
doi: 10.1021/acs.nanolett.6b03517
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 1 -6 .
[2] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 7 -14 .
[3] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 15 -23 .
[4] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 24 -31 .
[5] MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui. Effect of miR-27b-3p regulating SMAD1 on osteosarcoma cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 32 -37 .
[6] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 38 -46 .
[7] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 47 -52 .
[8] XIAO Juan, XIAO Qiang, CONG Wei, LI Ting, DING Shouluan, ZHANG Yuan, SHAO Chunchun, WU Mei, LIU Jianing, JIA Hongying. Comparison of diagnostic efficacy of two kinds of thyroid imagine reporting and data systems[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 53 -59 .
[9] DING Xiangyun, YU Qingmei, ZHANG Wenfang, ZHUANG Yuan, HAO Jing. Correlation of the expression of insulin-like growth factor II in granulosa cells and ovulation induction outcomes of 84 patients with polycystic ovary syndrome[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 60 -66 .
[10] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 67 -71 .