Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (8): 50-60.doi: 10.6040/j.issn.1671-7554.0.2020.0602
• Special Topic on Brain Science and Brain Like Intelligence • Previous Articles Next Articles
Di ZHANG1,2,*(),Meng YU1,2,Xia LIU1,2
CLC Number:
1 |
Boyden ES , Zhang F , Bamberg E , et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nat Neurosci, 2005, 8 (9): 1263- 1268.
doi: 10.1038/nn1525 |
2 |
Nagel G , Szellas T , Huhn W , et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel[J]. Proc Natl Acad Sci U S A, 2003, 100 (24): 13940- 13945.
doi: 10.1073/pnas.1936192100 |
3 | Váró G , Brown LS , Lakatos M , et al. Characterization of the photochemical reaction cycle of proteorhodopsin[J]. Biophys J, 2003, 84 (2 Pt 1): 1202- 1207. |
4 |
Zhang F , Prigge M , Beyrière F , et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri[J]. Nat Neurosci, 2008, 11 (6): 631- 633.
doi: 10.1038/nn.2120 |
5 |
Berl T . Treating hyponatremia: damned if we do and damned if we don't[J]. Kidney Int, 1990, 37 (3): 1006- 1018.
doi: 10.1038/ki.1990.78 |
6 | Gunaydin LA , Yizhar O , Berndt A , et al. Ultrafast optogenetic control[J]. Nat Neurosci, 2010, 13 (3): 387- 392. |
7 |
Yizhar O , Fenno LE , Prigge M , et al. Neocortical excitation/inhibition balance in information processing and social dysfunction[J]. Nature, 2011, 477 (7363): 171- 178.
doi: 10.1038/nature10360 |
8 | Muir J, Bagot RC. Optogenetics: illuminating the neural circuits of depression[M]// Wquevedo J, Carvalho AF, Zarate CA. Neurobiology of depression. Amsterdam: Elsevier, 2019: 147-157. |
9 |
Chaudhury D , Liu H , Han MH . Neuronal correlates of depression[J]. Cell Mol Life Sci, 2015, 72 (24): 4825- 4848.
doi: 10.1007/s00018-015-2044-6 |
10 |
Chen P , Hong W . Neural Circuit Mechanisms of Social Behavior[J]. Neuron, 2018, 98 (1): 16- 30.
doi: 10.1016/j.neuron.2018.02.026 |
11 |
Ramirez S , Tonegawa S , Liu X . Identification and optogenetic manipulation of memory engrams in the hippocampus[J]. Front Behav Neurosci, 2014, 7: 226.
doi: 10.3389/fnbeh.2013.00226 |
12 |
Josselyn SA , Tonegawa S . Memory engrams: recalling the past and imagining the future[J]. Science, 2020, 367 (6473): eaaw4325.
doi: 10.1126/science.aaw4325 |
13 |
Denny CA , Lebois E , Ramirez S . From engrams to pathologies of the brain[J]. Front Neural Circuits, 2017, 11: 23.
doi: 10.3389/fncir.2017.00023 |
14 |
Stamatakis AM , Stuber GD . Optogenetic strategies to dissect the neural circuits that underlie reward and addiction[J]. Cold Spring Harb Perspect Med, 2012, 2 (11): a011924.
doi: 10.1101/cshperspect.a011924 |
15 |
Montgomery KL , Yeh AJ , Ho JS , et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice[J]. Nat Methods, 2015, 12 (10): 969- 974.
doi: 10.1038/nmeth.3536 |
16 |
Chen S , Weitemier AZ , Zeng X , et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics[J]. Science, 2018, 359 (6376): 679- 684.
doi: 10.1126/science.aaq1144 |
17 |
Zhou XX , Chung HK , Lam AJ , et al. Optical control of protein activity by fluorescent protein domains[J]. Science, 2012, 338 (6108): 810- 814.
doi: 10.1126/science.1226854 |
18 |
Idevall-Hagren O , Dickson EJ , Hille B , et al. Optogenetic control of phosphoinositide metabolism[J]. Proc Natl Acad Sci U S A, 2012, 109 (35): E2316- E2323.
doi: 10.1073/pnas.1211305109 |
19 |
Strickland D , Lin Y , Wagner E , et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology[J]. Nat Methods, 2012, 9 (4): 379- 384.
doi: 10.1038/nmeth.1904 |
20 |
Grusch M , Schelch K , Riedler R , et al. Spatio-temporally precise activation of engineered receptor tyrosine kinases by light[J]. EMBO J, 2014, 33 (15): 1713- 1726.
doi: 10.15252/embj.201387695 |
21 | Nagaraj S , Mills E , Wong SSC , et al. Programming membrane fusion and subsequent apoptosis into mammalian cells[J]. ACS Synth Biol, 2013, 2 (4): 173- 179. |
22 |
Taslimi A , Vrana JD , Chen D , et al. An optimized optogenetic clustering tool for probing protein interaction and function[J]. Nat Commun, 2014, 5: 4925.
doi: 10.1038/ncomms5925 |
23 |
Bonger KM , Rakhit R , Payumo AY , et al. General method for regulating protein stability with light[J]. ACS Chem Biol, 2014, 9 (1): 111- 115.
doi: 10.1021/cb400755b |
24 |
Chen D , Gibson ES , Kennedy MJ . A light-triggered protein secretion system[J]. J Cell Biol, 2013, 201 (4): 631- 640.
doi: 10.1083/jcb.201210119 |
25 |
Motta-Mena LB , Reade A , Mallory MJ , et al. An optogenetic gene expression system with rapid activation and deactivation kinetics[J]. Nat Chem Biol, 2014, 10 (3): 196- 202.
doi: 10.1038/nchembio.1430 |
26 |
Bishop AC , Ubersax JA , Petsch DT , et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase[J]. Nature, 2000, 407 (6802): 395- 401.
doi: 10.1038/35030148 |
27 |
Cohen MS , Zhang C , Shokat KM , et al. Structural bioinformatics-based design of selective, irreversible kinase inhibitors[J]. Science, 2005, 308 (5726): 1318- 1321.
doi: 10.1126/science1108367 |
28 |
Dar AC , Das TK , Shokat KM , et al. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology[J]. Nature, 2012, 486 (7401): 80- 84.
doi: 10.1038/nature11127 |
29 |
Alexander GM , Rogan SC , Abbas AI , et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors[J]. Neuron, 2009, 63 (1): 27- 39.
doi: 10.1016/j.neuron.2009.06.014 |
30 |
Vardy E , Robinson JE , Li C , et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior[J]. Neuron, 2015, 86 (4): 936- 946.
doi: 10.1016/j.neuron.2015.03.065 |
31 |
Lerchner W , Xiao C , Nashmi R , et al. Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl- channel[J]. Neuron, 2007, 54 (1): 35- 49.
doi: 10.1016/j.neuron.2007.02.030 |
32 |
Magnus CJ , Lee PH , Atasoy D , et al. Chemical and genetic engineering of selective ion channel-ligand interactions[J]. Science, 2011, 333 (6047): 1292- 1296.
doi: 10.1126/science.1206606 |
33 |
Roth BL . DREADDs for neuroscientists[J]. Neuron, 2016, 89 (4): 683- 694.
doi: 10.1016/j.neuron.2016.01.040 |
34 |
Gomez JL , Bonaventura J , Lesniak W , et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine[J]. Science, 2017, 357 (6350): 503- 507.
doi: 10.1126/science.aan2475 |
35 |
Christine CW , Bankiewicz KS , Wan Laar AS , et al. Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for parkinson's disease[J]. Ann Neurol, 2019, 85 (5): 704- 714.
doi: 10.1002/ana.25450 |
36 |
Drew L . Gene therapy targets epilepsy[J]. Nature, 2018, 564 (7735): S10- S11.
doi: 10.1038/d41586-018-07644-y |
37 |
Sehara Y , Fujimoto KI , Ikeguchi K , et al. Persistent expression of dopamine-synthesizing enzymes 15 years after gene transfer in a primate model of parkinson's disease[J]. Hum Gene Ther Clin Dev, 2017, 28 (2): 74- 79.
doi: 10.1089/humc.2017.010 |
38 |
Chan KY , Jang MJ , Yoo BB , et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems[J]. Nat Neurosci, 2017, 20 (8): 1172- 1179.
doi: 10.1038/nn.4593 |
39 |
Lipsman N , Meng Y , Bethune AJ , et al. Blood-brain barrier opening in Alzheimer's disease using MR-guided focused ultrasound[J]. Nat Commun, 2018, 9 (1): 2336.
doi: 10.1038/s41467-018-04529-6 |
40 |
Szablowski JO , Lee-Gosselin A , Lue B , et al. Acoustically targeted chemogenetics for the non-invasive control of neural circuits[J]. Nat Biomed Eng, 2018, 2 (7): 475- 484.
doi: 10.1038/s41551-018-0258-2 |
41 |
Magnus CJ , Lee PH , Bonaventura J , et al. Ultrapotent chemogenetics for research and potential clinical applications[J]. Science, 2019, 364 (6436): eaav5282.
doi: 10.1126/science.aav5282 |
42 |
Weir GA , Middleton SJ , Clark AJ , et al. Using an engineered glutamate-gated chloride channel to silence sensory neurons and treat neuropathic pain at the source[J]. Brain, 2017, 140 (10): 2570- 2585.
doi: 10.1093/brain/awx201 |
43 | Barker AT , Jalinous R , Freeston IL . Non-invasive magnetic stimulation of human motor cortex[J]. Lancet, 1985, 1 (8437): 1106- 1107. |
44 |
Kujirai T , Caramia MD , Rothwell JC , et al. Corticocortical inhibition in human motor cortex[J]. J Physiol, 1993, 471: 501- 519.
doi: 10.1113/jphysiol.1993.sp019912 |
45 | Pascual-Leone A , Valls-Solé J , Wassermann EM , et al. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex[J]. Brain, 1994, 117 (Pt 4): 847- 858. |
46 |
Ge R , Downar J , Blumberger D , et al. Long-term effects of rTMS on the functional brain networks in treatment-resistant depression[J]. Brain Stimulation, 2019, 12 (2): 470.
doi: 10.1016/j.brs.2018.12.531 |
47 | Peng Z , Zhou C , Xue S , et al. Mechanism of repetitive transcranial magnetic stimulation for depression[J]. Shanghai Arch Psychiatry, 2018, 30 (2): 84- 92. |
48 |
Chervyakov AV , Chernyavsky AY , Sinitsyn DO , et al. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation[J]. Front Hum Neurosci, 2015, 9: 303.
doi: 10.3389/fnhum.2015.00303 |
49 |
George MS , Wassermann EM , Kimbrell TA , et al. Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: a placebo-controlled crossover trial[J]. Am J Psychiatry, 1997, 154 (12): 1752- 1756.
doi: 10.1176/ajp.154.12.1752 |
50 |
Klein E , Kreinin I , Chistyakov A , et al. Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double-blind controlled study[J]. Arch Gen Psychiatry, 1999, 56 (4): 315- 320.
doi: 10.1001/archpsyc.56.4.315 |
51 |
Rush AJ , Trivedi MH , Wisniewski SR , et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report[J]. Am J Psychiatry, 2006, 163 (11): 1905- 1917.
doi: 10.1176/ajp.2006.163.11.1905 |
52 |
Hunter AM , Minzenberg MJ , Cook IA , et al. Concomitant medication use and clinical outcome of repetitive Transcranial Magnetic Stimulation (rTMS) treatment of Major Depressive Disorder[J]. Brain Behav, 2019, 9 (5): e01275.
doi: 10.1002/brb3.1275 |
53 |
Fitzgerald PB , Hoy KE , Elliot D , et al. Exploring alternative rTMS strategies in non-responders to standard high frequency left-sided treatment: a switching study[J]. J Affect Disord, 2018, 232: 79- 82.
doi: 10.1016/j.jad.2018.02.016 |
54 |
Fadini T , Matthäus L , Rothkegel H , et al. H-coil: induced electric field properties and input/output curves on healthy volunteers, comparison with a standard figure-of-eight coil[J]. Clin Neurophysiol, 2009, 120 (6): 1174- 1182.
doi: 10.1016/j.clinph.2009.02.176 |
55 |
Kaster TS , Daskalakis ZJ , Noda Y , et al. Efficacy, tolerability, and cognitive effects of deep transcranial magnetic stimulation for late-life depression: a prospective randomized controlled trial[J]. Neuropsychopharmacology, 2018, 43 (11): 2231- 2238.
doi: 10.1038/s41386-018-0121-x |
56 |
Tavares DF , Myczkowski ML , Alberto RL , et al. Treatment of bipolar depression with deep TMS: results from a double-blind, randomized, parallel group, sham-controlled clinical trial[J]. Neuropsychopharmacology, 2017, 42 (13): 2593- 2601.
doi: 10.1038/npp.2017.26 |
57 |
Keller MB , McCullough JP , Klein DN , et al. A comparison of nefazodone, the cognitive behavioral-analysis system of psychotherapy, and their combination for the treatment of chronic depression[J]. N Engl J Med, 2000, 342 (20): 1462- 1470.
doi: 10.1056/NEJM200005183422001 |
58 |
Carpenter LL , Janicak PG , Aaronson ST , et al. Transcranial magnetic stimulation (TMS) for major depression: a multisite, naturalistic, observational study of acute treatment outcomes in clinical practice[J]. Depress Anxiety, 2012, 29 (7): 587- 596.
doi: 10.1002/da.21969 |
59 | Cooper YA , Pianka ST , Alotaibi NM , et al. Repetitive transcranial magnetic stimulation for the treatment of drug-resistant epilepsy: a systematic review and individual participant data meta-analysis of real-world evidence[J]. Epilepsia Open, 2018, 3 (1): 55- 65. |
60 |
Dionisio A , Duarte IC , Patrício M , et al. The use of repetitive transcranial magnetic stimulation for stroke rehabilitation: a systematic review[J]. J Stroke Cerebrovasc Dis, 2018, 27 (1): 1- 31.
doi: 10.1016/j.jstrokecerebrovasdis.2017.09.008 |
61 | Bates KA , Rodger J . Repetitive transcranial magnetic stimulation for stroke rehabilitation-potential therapy or misplaced hope?[J]. Restor Neurol Neurosci, 2015, 33 (4): 557- 569. |
62 |
Nardone R , Sebastianelli L , Versace V , et al. Effects of repetitive transcranial magnetic stimulation in subjects with sleep disorders[J]. Sleep Med, 2020, 71: 113- 121.
doi: 10.1016/j.sleep.2020.01.028 |
63 |
Enticott PG , Fitzgibbon BM , Kennedy HA , et al. A double-blind, randomized trial of deep repetitive transcranial magnetic stimulation (rTMS) for autism spectrum disorder[J]. Brain Stimul, 2014, 7 (2): 206- 211.
doi: 10.1016/j.brs.2013.10.004 |
64 |
Stanley SA , Gagner JE , Damanpour S , et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice[J]. Science, 2012, 336 (6081): 604- 608.
doi: 10.1126/science.1216753 |
65 |
Stanley SA , Kelly L , Latcha KN , et al. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism[J]. Nature, 2016, 531 (7596): 647- 650.
doi: 10.1038/nature17183 |
66 |
Wheele MA , Smith CJ , Ottolini M , et al. Genetically targeted magnetic control of the nervous system[J]. Nat Neurosci, 2016, 19 (5): 756- 761.
doi: 10.1038/nn.4265 |
67 |
Chen R , Romero G , Christiansen MG , et al. Wireless magnetothermal deep brain stimulation[J]. Science, 2015, 347 (6229): 1477- 1480.
doi: 10.1126/science.1261821 |
68 |
Rao S , Chen R , LaRocca AA , et al. Remotely controlled chemomagnetic modulation of targeted neural circuits[J]. Nat Nanotechnol, 2019, 14 (10): 967- 973.
doi: 10.1038/s41565-019-0521-z |
69 | Mazars G , Merienne L , Cioloca C . Treatment of certain types of pain with implantable thalamic stimulators[J]. Neurochirurgie, 1974, 20 (2): 117- 24. |
70 |
Lozano AM , Eltahawy H . How does DBS work?[J]. Suppl Clin Neurophysiol, 2004, 57: 733- 736.
doi: 10.1016/s1567-424x(09)70414-3 |
71 |
Maciunas RJ , Maddux BN , Riley DE , et al. Prospective randomized double-blind trial of bilateral thalamic deep brain stimulation in adults with Tourette syndrome[J]. J Neurosurg, 2007, 107 (5): 1004- 1014.
doi: 10.3171/JNS-07/11/1004 |
72 |
Boon P , Vonck K , De Herdt V , et al. Deep brain stimulation in patients with refractory temporal lobe epilepsy[J]. Epilepsia, 2007, 48 (8): 1551- 1560.
doi: 10.1111/j.1528-1167.2007.01005.x |
73 | Frank F , Frank G , Gaist G , et al. [Deep brain stimulation in the treatment of chronic pain syndromes][J]. Riv Neurobiol, 1982, 28 (3-4): 309- 316. |
74 |
Lipsman N , Neimat JS , Lozano AM . Deep brain stimulation for treatment-refractory obsessive-compulsive disorder: the search for a valid target[J]. Neurosurgery, 2007, 61 (1): 1- 11.
doi: 10.1227/01.neu.0000279719.75403.f7 |
75 |
Schlaepfer TE , Cohen MX , Frick C , et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression[J]. Neuropsychopharmacology, 2008, 33 (2): 368- 377.
doi: 10.1038/sj.npp.1301408 |
76 |
Lozano AM , Fosdick L , Chakravarty MM , et al. A phase II study of fornix deep brain stimulation in mild Alzheimer's disease[J]. J Alzheimers Dis, 2016, 54 (2): 777- 787.
doi: 10.3233/JAD-160017 |
77 | Lee KH, Mosier EM, Blaha CD. Mechanisms of action of deep brain stimulation: a review[M]// Krames ES, Peckham PH, Rezai AR. Neuromodulation, 2018: 193-210. |
78 |
Gaskell WH . The electrical changes in the quiescent cardiac muscle which accompany stimulation of the vagus nerve[J]. J Physiol, 1886, 7 (5-6): 451- 452.
doi: 10.1113/jphysiol.1886.sp000235 |
79 | Penry JK , Dean JC . Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results[J]. Epilepsia, 1990, 31 (Suppl 2): S40- S43. |
80 |
George MS , Rush AJ , Marangell LB , et al. A one-year comparison of vagus nerve stimulation with treatment as usual for treatment-resistant depression[J]. Biol Psychiatry, 2005, 58 (5): 364- 373.
doi: 10.1016/j.biopsych.2005.07.028 |
81 |
Rush AJ , Marangell LB , Sackeim HA , et al. Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial[J]. Biol Psychiatry, 2005, 58 (5): 347- 354.
doi: 10.1016/j.biopsych.2005.05.025 |
82 |
Conway CR , Xiong W . The mechanism of action of vagus nerve stimulation in treatment-resistant depression: current conceptualizations[J]. Psychiatr Clin North Am, 2018, 41 (3): 395- 407.
doi: 10.1016/j.psc.2018.04.005 |
83 | Vonck KEJ, Larsen LE. Vagus nerve stimulation[M]// Krames ES, Peckham PH, Rezai AR. Neuromodulation, 2018: 211-220. |
84 | Nitsche MA , Paulus W . Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation[J]. J Physiol, 2000, 527 (Pt 3): 633- 639. |
85 | Monte-Silva K , Kuo MF , Hessenthaler S , et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation[J]. Brain Stimul, 2013, 6 (3): 424- 432. |
86 | Kronberg G , Bridi M , Abel T , et al. Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects[J]. Brain Stimul, 2017, 10 (1): 51- 58. |
87 | Unal G, Bikson M. Transcranial direct current stimulation (tDCS)[M]// Krames ES, Peckham PH, Rezai AR. Neuromodulation, 2018: 1589-1610. |
88 |
Elias WJ , Lipsman N , Ondo WG , et al. A randomized trial of focused ultrasound thalamotomy for essential tremor[J]. N Engl J Med, 2016, 375 (8): 730- 739.
doi: 10.1056/NEJMoa1600159 |
89 |
Na YC , Chang WS , Jung HH , et al. Unilateral magnetic resonance-guided focused ultrasound pallidotomy for Parkinson disease[J]. Neurology, 2015, 85 (6): 549- 551.
doi: 10.1212/WNL.0000000000001826 |
90 |
Jung HH , Kim SJ , Roh D , et al. Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-of-concept study[J]. Mol Psychiatry, 2015, 20 (10): 1205- 1211.
doi: 10.1038/mp.2014.154 |
91 |
Coluccia D , Fandino J , Schwyzer L , et al. First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound[J]. J Ther Ultrasound, 2014, 2: 17.
doi: 10.1186/2050-5736-2-17 |
92 | Tyler WJ . The mechanobiology of brain function[J]. Nat Rev Neurosci, 2012, 13 (12): 867- 878. |
93 |
Tufail Y , Matyushov A , Baldwin N , et al. Transcranial pulsed ultrasound stimulates intact brain circuits[J]. Neuron, 2010, 66 (5): 681- 694.
doi: 10.1016/j.neuron.2010.05.008 |
94 |
Fini M , Tyler WJ . Transcranial focused ultrasound: a new tool for non-invasive neuromodulation[J]. Int Rev Psychiatry, 2017, 29 (2): 168- 177.
doi: 10.1080/09540261.2017.1302924 |
95 |
Deffieux T , Younan Y , Wattiez N , et al. Low-intensity focused ultrasound modulates monkey visuomotor behavior[J]. Curr Biol, 2013, 23 (23): 2430- 2433.
doi: 10.1016/j.cub.2013.10.029 |
96 |
Panczykowski DM , Monaco EA 3rd , Friedlander RM . Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans[J]. Neurosurgery, 2014, 74 (6): N8.
doi: 10.1227/NEU.00000000-00000365 |
97 |
Lee W , Kim H , Jung Y , et al. Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex[J]. Sci Rep, 2015, 5: 8743.
doi: 10.1038/srep08743 |
98 |
Lee W , Kim HC , Jung Y , et al. , Transcranial focused ultrasound stimulation of human primary visual cortex[J]. Sci Rep, 2016, 6: 34026.
doi: 10.1038/srep34026 |
99 |
Chu PC , Chai WY , Tsai CH , et al. Focused ultrasound-induced blood-brain barrier opening: association with mechanical index and cavitation index analyzed by dynamic contrast-enhanced magnetic-resonance imaging[J]. Sci Rep, 2016, 6: 33264.
doi: 10.1038/srep-33264 |
100 |
Airan RD , Meyer RA , Ellens NPK , et al. Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions[J]. Nano Lett, 2017, 17 (2): 652- 659.
doi: 10.1021/acs.nanolett.6b03517 |
No related articles found! |
|