Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (8): 81-87.doi: 10.6040/j.issn.1671-7554.0.2020.0598

• Special Topic on Brain Science and Brain Like Intelligence • Previous Articles     Next Articles

A research on multi-modal MRI analysis based on machine learning for brain glioma

Qiang WU1,2,*(),Zekun HE1,Ju LIU1,2,Xiaomeng CUI1,Shuang SUN1,Wei SHI1   

  1. 1. School of Information Science and Engineering, Shandong University, Qingdao 266237, Shandong, China
    2. Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China
  • Received:2020-04-15 Online:2020-08-07 Published:2020-08-07
  • Contact: Qiang WU E-mail:wuqiang@sdu.edu.cn

Abstract:

Brain glioma, a common primary brain tumor, has characteristics of high recurrence rate, high death rate and low cure rate. Conventional clinical diagnosis mainly depends on CT and MRI. With the development of imaging technology and machine learning methods, multi-modal image intelligent analysis technology has gradually become a research hotspot, which has an important application prospect in brain glioma lesion segmentation and measurement, tumor classification, overall survival prediction and genotype identification. This paper updates the application of machine learning and multi-modal imaging in the clinical diagnosis and prognosis of brain glioma.

Key words: Brain Glioma, Machine Learning, Multi-modal MRI, Image lesion segmentation, Survival prediction, Genotype prediction

CLC Number: 

  • R574

Fig.1

Schematic diagram of U-Net architecture"

Fig.2

Schematic diagram of multiple feature extraction network architecture"

Fig.3

Schematic diagram of multiple feature extraction module, attention unit, and cross layer connections"

1 Holland EC . Progenitor cells and glioma formation[J]. Curr Opin Neurol, 2011, 14 (6): 683- 688.
doi: 10.1097/00019052-200112000-00002
2 国家卫生健康委员会医政医管局. 脑胶质瘤诊疗规范(2018年版)[J]. 中华神经外科杂志, 2019, 35 (3): 217.
3 Menze BH, Van Leemput K, Lashkari D, et al. A generative model for brain tumor segmentation in multi-modal images[C]. Medical Image Computing and Computer-Assisted Intervention, 2010: 151-159.
4 Kaus MR , Warfield SK , Nabavi A , et al. Automated segmentation of MR images of brain tumors[J]. Radiology, 2001, 218 (2): 586- 591.
doi: 10.1148/radiology.218.2.r01fe44586
5 Prastawa M , Bullitt E , Moon N , et al. Automatic brain tumor segmentation by subject specific modification of atlas priors1[J]. Acad Radiol, 2003, 10 (12): 1341- 1348.
doi: 10.1016/S1076-6332(03)00506-3
6 Corso JJ , Sharon E , Dube S , et al. Efficient multilevel brain tumor segmentation with integrated bayesian model classification[J]. IEEE Trans Med Imaging, 2008, 27 (5): 629- 640.
doi: 10.1109/TMI.2007.912817
7 Gering DT, Grimson WE, Kikinis R, et al. Recognizing deviations from normalcy for brain tumor segmentation[C]. Medical Image Computing and Computer-Assisted Intervention, 2002: 388-395.
8 Lee C, Schmidt M, Murtha A, et al. Segmenting brain tumors with conditional random fields and support vector machines[C]. International Conference on Computer Vision, 2005: 469-478.
9 李晓龙, 帅仁俊. 一种基于形态学的脑肿瘤分割[J]. 液晶与显示, 2014, 30 (1): 157- 162.
LI Xiaolong , SHUAI Renjun . One kind of segmentation of brain tumors based on morphology[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 30 (1): 157- 162.
10 Pereira S , Pinto A , Alves V , et al. Brain tumor segmentation using convolutional neural networks in MRI images[J]. IEEE Trans Med Imaging, 2016, 35 (5): 1240- 1251.
doi: 10.1109/TMI.2016.2538465
11 Havaei M , Davy A , Warde-Farley D , et al. Brain tumor segmentation with deep neural networks[J]. Med Image Anal, 2017, 35: 18- 31.
doi: 10.1016/j.media.2016.05.004
12 李健, 罗蔓, 罗晓, 等. 基于多尺度卷积神经网络的磁共振成像脑肿瘤分割研究[J]. 中国医学装备, 2016, 13 (2): 25- 28.
LI Jian , LUO Man , LUO Xiao , et al. Research on the application of brain tumor segmentation of MRI based on multi-scale convolutional neural networks[J]. China Medical Equipment, 2016, 13 (2): 25- 28.
13 Ronneberger O, Fischer P, Brox T, et al. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]. Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
14 Shi W, Pang ES, Wu Q, et al. Brain tumor segmentation using dense channels 2D U-net and Multiple Feature Extraction Network[C]. MICCAI BrainLes, 2020: 273-283.
15 Dempsey MF , Condon B , Hadley DM , et al. Measurement of tumor "size" in recurrent malignant glioma: 1D, 2D, or 3D?[J]. AJNR Am J Neuroradiol, 2005, 26 (4): 770- 776.
16 Joe BN , Fukui MB , Meltzer CC , et al. Brain tumor volume measurement: comparison of manual and semiautomated methods[J]. Radiology, 1999, 212 (3): 811- 816.
17 Ge C, Qu Q, Gu I Y, et al. 3D Multi-scale convolutional networks for glioma grading using MR images[C]. International Conference on Image Processing, 2018: 141-145.
18 Al-Zurfi AN, Meziane F, Aspin R. A computer-aided diagnosis system for glioma grading using three dimensional texture analysis and machine learning in MRI brain tumour [C]. International Conference on Bio-engineering for Smart Technologies, 2019: 1-5.
19 Lin Y, Wu Y, Pang H, et al. A precise grading method for glioma based on radiomics[C]. Ubiquitous Intelligence and Computing, 2017: 1-6.
20 Alzurfi AN, Meziane F, Aspin R, et al. Automated glioma grading based on an efficient ensemble design of a multiple classifier system using deep iteration neural networks matrix[C]. International Conference on Automation and Computing, 2018: 1-6.
21 Bi X, Liu JG, Cao YS. Classification of low-grade and high-grade glioma using multiparametric radiomics model [C]. Information Technology, Networking, Electronic and Automation Control Conference, 2019: 574-577.
22 Sun P , Wang D , Mok V , et al. Comparison of feature selection methods and machine learning classifiers for radiomics analysis in glioma grading[J]. IEEE Access, 2019, 7: 102010- 102020.
doi: 10.1109/ACCESS.2019.2928975
23 Ge C, Gu IY, Jakola AS, et al. Deep Learning and multi-sensor fusion for glioma classification using multistream 2D convolutional networks[C]. International Conference of the IEEE Engineering in Medicine and Biology Society, 2018: 5894-5897.
24 Wu Y , Hao H , Li J , et al. Four-sequence maximum entropy discrimination algorithm for glioma grading[J]. IEEE Access, 2019, 7: 52246- 52256.
doi: 10.1109/ACCESS.2019.2910849
25 Ye F, Pu J, Wang J, et al. Glioma grading based on 3D multimodal convolutional neural network and privileged learning[C]. Bioinformatics and Biomedicine, 2017: 759-763.
26 Pang H, Liu C, Zhao Z, et al. Glioma grading based on gentle-adaboost algorithm and radiomics[C]. Ubiquitous Intelligence and Computing, 2017: 1-5.
27 Bonte S, Goethals I, Van Holen R, et al. Individual Prediction of brain tumor histological grading using radiomics on structural MRI[C]. Nuclear Science Symposium and Medical Imaging Conference, 2017: 1-3.
28 Latif G, Butt MM, Khan AH, et al. Multiclass brain Glioma tumor classification using block-based 3D Wavelet features of MR images [C]. International Conference on Electrical and Electronic Engineering, 2017: 333-337.
29 Er FC, Firat Z, Kovanlikaya I, et al. Multivariate discriminant analysis of multiparametric brain MRI to differentiate high grade and low grade gliomas—A computer-aided diagnosis development study[C]. Bioinformatics and Bioengineering, 2013: 1-5.
30 张原理, 程豫菲, 崔振杰, 等. 磁共振成像分级胶质瘤的新方法及结果[J]. 现代肿瘤医学, 2017, 25 (24): 4054- 4058.
ZHANG Yuanli , CHENG Yufei , CUI Zhenjie , et al. Ti A new method of magnetic resonance imaging in grading of gliomas and the results[J]. Journal of Modern Oncology, 2017, 25 (24): 4054- 4058.
31 吴聪, 黄中勇, 殷浩, 等. 基于卷积神经网络的脑胶质瘤分级[J]. 湖北工业大学学报, 2017, 32 (4): 60- 64.
32 Wangaryattawanich P, Wang J, Thomas G, et al. Survival analysis of pre-operative GBM patients by using quantitative image features[C]. International Conference on Control Decision and Information Technologies, 2014: 625-627.
33 Agravat R, Raval MS. Prediction of overall survival of brain tumor patients [C]. 2019 IEEE Region 10 Conference, 2019: 31-35.
34 欧阳一彬, 莫业和, 何青龙, 等. 影响脑胶质瘤患者生存和预后的相关因素分析[J]. 河北医药, 2018, 40 (10): 1524- 1526.
doi: 10.3969/j.issn.1002-7386.2018.10.019
OUYANG Yibing , MO Yehe , HE Qinglong , et al. Analysis for related factors influencing the survival and prognosis of patients with brain glioma[J]. Hebei Medical Journal, 2018, 40 (10): 1524- 1526.
doi: 10.3969/j.issn.1002-7386.2018.10.019
35 彭世义, 李艳萍, 陈志萍, 等. WHOⅡ级脑胶质瘤预后影响因素分析[J]. 中国肿瘤临床, 2018, 45 (8): 402- 407.
36 葛培林, 钟云萍. 低级别脑胶质瘤预后分析[J]. 肿瘤防治研究, 2005, 32 (7): 438- 439.
GE Peilin , ZHONG Yunping . Prognosis analysis of low grade gliomas[J]. Cancer Research On Prevention and Treatment, 2005, 32 (7): 438- 439.
37 刘桂云, 江蓉, 徐晨阳, 等. 高级别脑胶质瘤综合治疗后生存分析[J]. 中南大学学报(医学版), 2018, 43 (4): 388- 393.
LIU Guiyun , JIANG Rong , XU Chenyang , et al. Survival analysis for high-grade glioma patients who received comprehensive treatment[J]. Journal of Central South University(Medical Science), 2018, 43 (4): 388- 393.
38 Diller EE, Cao S, Ey B, et al. Predicted disease compositions of human gliomas estimated from multiparametric MRI can predict endothelial proliferation, tumor grade, and overall survival[EB/OL]. [2019-08-06]. https: //arxiv.org/abs/1908.02334v1
39 Goyaouti J, Calmon R, Orlhac F, et al. Can structural MRI radiomics predict DIPG histone H3 mutation and patient overall survival at diagnosis time[C]. IEEE-EMBS International Conference on Biomedical and Health Informatics, 2019: 1-4.
40 Wang S, Dai C, Mo Y, et al. Automatic brain tumor segmentation and biophysics-guided survival prediction[C]. MICCAI BrainLes, 2020: 61-72.
41 Alex V, Safwan M, Krishnamurthi G, et al. Automatic segmentation and overall survival prediction in gliomas using fully convolutional neural network and texture analysis[C]. MICCAI BrainLes, 2017: 216-225.
42 Chaddad A, Desrosiers C, Toews M, et al. Radiomic analysis of multi-contrast brain MRI for the prediction of survival in patients with glioblastoma multiforme[C]. International Conference of the IEEE Engineering in Medicine and Biology Society, 2016: 4035-4038.
43 Agravat R, Raval MS. Brain tumor segmentation and survival prediction[C]. MICCAI BrainLes, 2020: 338-348.
44 Amian M, Soltaninejad M. Multi-Resolution 3D CNN for MRI brain tumor segmentation and survival prediction[C]. BrainLes, 2019, 2020: 221-230.
45 Chato L, Latifi S. Machine learning and deep learning techniques to predict overall survival of brain tumor patients using MRI images[C]. Bioinformatics and Bioengineering, 2017: 9-14.
46 Chato L, Chow E, Latifi S, et al. Wavelet transform to improve accuracy of a prediction model for overall survival time of brain tumor patients based on MRI images[C]. IEEE International Conference on Healthcare Informatics, 2018: 441-442.
47 熊正平, 杨树仁. 分子影像学[J]. 国际医学放射学杂志, 2002, 25 (3): 131- 134.
48 折刚刚, 郝文炯. 胶质母细胞瘤MGMT启动子甲基化的影像征象研究进展[J]. 中国微侵袭神经外科杂志, 2018, 23 (9): 428- 431.
49 魏炜, 崔洛, 解立志, 等. 基于MRI影像组学预测胶质母细胞瘤MGMT基因启动子甲基化状态的应用[J]. 影像诊断与介入放射学, 2018, 27 (3): 179- 184.
doi: 10.3969/j.issn.1005-8001.2018.03.001
WEI Wei , CUI Luo , XIE Lizhi , et al. MR-based radiomics method for prediction of MGMT promoter methylation in glioblastoma[J]. Diagnostic Imaging & Interventional Radiology, 2018, 27 (3): 179- 184.
doi: 10.3969/j.issn.1005-8001.2018.03.001
50 Mertz L . Molecular imaging probes spy on the body's inner workings: miniaturized microscopes, microbubbles, 7-and 15-T scanners, diffusion-tensor MRI, and other molecular-imaging technologies are pushing molecular imaging into the future[J]. IEEE Pulse, 2013, 4 (1): 18- 22.
doi: 10.1109/MPUL.2012.2228809
51 Liu T, Wu G, Yu J, et al. A mRMRMSRC feature selection method for radiomics approach[C]. International Conference of the IEEE Engineering in Medicine and Biology Society, 2017: 616-619.
52 Paech D , Windschuh J , Oberhollenzer J , et al. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T[J]. Neuro Oncol, 2018, 20 (12): 1661- 1671.
doi: 10.1093/neuonc/noy073
53 Lu C , Hsu FT , Hsieh KL , et al. Machine learning-based radiomics for molecular subtyping of gliomas[J]. Clin Cancer Res, 2018, 24 (18): 4429- 4436.
doi: 10.1158/1078-0432.CCR-17-3445
54 Zhou H , Vallieres M , Bai HX , et al. MRI features predict survival and molecular markers in diffuse lower-grade gliomas[J]. Neuro Oncol, 2017, 19 (6): 862- 870.
doi: 10.1093/neuonc/now256
55 Zhang B , Chang K , Ramkissoon S , et al. Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas[J]. Neuro Oncol, 2017, 19 (1): 109- 117.
doi: 10.1093/neuonc/now121
56 Chen L , Zhang H , Lu J , et al. Multi-label nonlinear matrix completion with transductive multi-task feature selection for joint MGMT and IDH1 status prediction of patient with high-grade gliomas[J]. IEEE Trans Med Imaging, 2018, 37 (8): 1775- 1787.
doi: 10.1109/TMI.2018.2807590
57 Levner I, Drabycz S, Roldan G, et al. Predicting MGMT Methylation Status of Glioblastomas from MRI Texture[C]. Medical Image Computing and Computer-Assisted Intervention, 2009: 522-530.
58 Chaddad A , Desrosiers C , Abdulkarim B , et al. Predicting the gene status and survival outcome of lower grade glioma patients with multimodal MRI features[J]. IEEE Access, 2019, 7: 75976- 75984.
doi: 10.1109/ACCESS.2019.2920396
59 Ahmad A, Sarkar S, Shah A, et al. Predictive and discriminative localization of IDH genotype in high grade gliomas using deep convolutional neural nets[C]. International Symposium on Biomedical Imaging, 2019: 372-375.
60 Tixier F , Um H , Bermudez D , et al. Preoperative MRI-radiomics features improve prediction of survival in glioblastoma patients over MGMT methylation status alone[J]. Oncotarget, 2019, 10 (6): 660- 672.
doi: 10.18632/oncotarget.26578
61 Wu G , Chen Y , Wang Y , et al. Sparse representation-based radiomics for the diagnosis of brain tumors[J]. IEEE Trans Med Imaging, 2018, 37 (4): 893- 905.
doi: 10.1109/TMI.2017.2776967
[1] Wei ZHANG,Wenhao TAN,Yibin LI. Locmotion control of quadruped robot based on deep reinforcement learning: review and prospect [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 1 -6 .
[2] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 7 -14 .
[3] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 15 -23 .
[4] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 24 -31 .
[5] MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui. Effect of miR-27b-3p regulating SMAD1 on osteosarcoma cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 32 -37 .
[6] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 38 -46 .
[7] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 47 -52 .
[8] XIAO Juan, XIAO Qiang, CONG Wei, LI Ting, DING Shouluan, ZHANG Yuan, SHAO Chunchun, WU Mei, LIU Jianing, JIA Hongying. Comparison of diagnostic efficacy of two kinds of thyroid imagine reporting and data systems[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 53 -59 .
[9] DING Xiangyun, YU Qingmei, ZHANG Wenfang, ZHUANG Yuan, HAO Jing. Correlation of the expression of insulin-like growth factor II in granulosa cells and ovulation induction outcomes of 84 patients with polycystic ovary syndrome[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 60 -66 .
[10] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 67 -71 .