Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (8): 81-87.doi: 10.6040/j.issn.1671-7554.0.2020.0598
• Special Topic on Brain Science and Brain Like Intelligence • Previous Articles Next Articles
Qiang WU1,2,*(),Zekun HE1,Ju LIU1,2,Xiaomeng CUI1,Shuang SUN1,Wei SHI1
CLC Number:
1 |
Holland EC . Progenitor cells and glioma formation[J]. Curr Opin Neurol, 2011, 14 (6): 683- 688.
doi: 10.1097/00019052-200112000-00002 |
2 | 国家卫生健康委员会医政医管局. 脑胶质瘤诊疗规范(2018年版)[J]. 中华神经外科杂志, 2019, 35 (3): 217. |
3 | Menze BH, Van Leemput K, Lashkari D, et al. A generative model for brain tumor segmentation in multi-modal images[C]. Medical Image Computing and Computer-Assisted Intervention, 2010: 151-159. |
4 |
Kaus MR , Warfield SK , Nabavi A , et al. Automated segmentation of MR images of brain tumors[J]. Radiology, 2001, 218 (2): 586- 591.
doi: 10.1148/radiology.218.2.r01fe44586 |
5 |
Prastawa M , Bullitt E , Moon N , et al. Automatic brain tumor segmentation by subject specific modification of atlas priors1[J]. Acad Radiol, 2003, 10 (12): 1341- 1348.
doi: 10.1016/S1076-6332(03)00506-3 |
6 |
Corso JJ , Sharon E , Dube S , et al. Efficient multilevel brain tumor segmentation with integrated bayesian model classification[J]. IEEE Trans Med Imaging, 2008, 27 (5): 629- 640.
doi: 10.1109/TMI.2007.912817 |
7 | Gering DT, Grimson WE, Kikinis R, et al. Recognizing deviations from normalcy for brain tumor segmentation[C]. Medical Image Computing and Computer-Assisted Intervention, 2002: 388-395. |
8 | Lee C, Schmidt M, Murtha A, et al. Segmenting brain tumors with conditional random fields and support vector machines[C]. International Conference on Computer Vision, 2005: 469-478. |
9 | 李晓龙, 帅仁俊. 一种基于形态学的脑肿瘤分割[J]. 液晶与显示, 2014, 30 (1): 157- 162. |
LI Xiaolong , SHUAI Renjun . One kind of segmentation of brain tumors based on morphology[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 30 (1): 157- 162. | |
10 |
Pereira S , Pinto A , Alves V , et al. Brain tumor segmentation using convolutional neural networks in MRI images[J]. IEEE Trans Med Imaging, 2016, 35 (5): 1240- 1251.
doi: 10.1109/TMI.2016.2538465 |
11 |
Havaei M , Davy A , Warde-Farley D , et al. Brain tumor segmentation with deep neural networks[J]. Med Image Anal, 2017, 35: 18- 31.
doi: 10.1016/j.media.2016.05.004 |
12 | 李健, 罗蔓, 罗晓, 等. 基于多尺度卷积神经网络的磁共振成像脑肿瘤分割研究[J]. 中国医学装备, 2016, 13 (2): 25- 28. |
LI Jian , LUO Man , LUO Xiao , et al. Research on the application of brain tumor segmentation of MRI based on multi-scale convolutional neural networks[J]. China Medical Equipment, 2016, 13 (2): 25- 28. | |
13 | Ronneberger O, Fischer P, Brox T, et al. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]. Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241. |
14 | Shi W, Pang ES, Wu Q, et al. Brain tumor segmentation using dense channels 2D U-net and Multiple Feature Extraction Network[C]. MICCAI BrainLes, 2020: 273-283. |
15 | Dempsey MF , Condon B , Hadley DM , et al. Measurement of tumor "size" in recurrent malignant glioma: 1D, 2D, or 3D?[J]. AJNR Am J Neuroradiol, 2005, 26 (4): 770- 776. |
16 | Joe BN , Fukui MB , Meltzer CC , et al. Brain tumor volume measurement: comparison of manual and semiautomated methods[J]. Radiology, 1999, 212 (3): 811- 816. |
17 | Ge C, Qu Q, Gu I Y, et al. 3D Multi-scale convolutional networks for glioma grading using MR images[C]. International Conference on Image Processing, 2018: 141-145. |
18 | Al-Zurfi AN, Meziane F, Aspin R. A computer-aided diagnosis system for glioma grading using three dimensional texture analysis and machine learning in MRI brain tumour [C]. International Conference on Bio-engineering for Smart Technologies, 2019: 1-5. |
19 | Lin Y, Wu Y, Pang H, et al. A precise grading method for glioma based on radiomics[C]. Ubiquitous Intelligence and Computing, 2017: 1-6. |
20 | Alzurfi AN, Meziane F, Aspin R, et al. Automated glioma grading based on an efficient ensemble design of a multiple classifier system using deep iteration neural networks matrix[C]. International Conference on Automation and Computing, 2018: 1-6. |
21 | Bi X, Liu JG, Cao YS. Classification of low-grade and high-grade glioma using multiparametric radiomics model [C]. Information Technology, Networking, Electronic and Automation Control Conference, 2019: 574-577. |
22 |
Sun P , Wang D , Mok V , et al. Comparison of feature selection methods and machine learning classifiers for radiomics analysis in glioma grading[J]. IEEE Access, 2019, 7: 102010- 102020.
doi: 10.1109/ACCESS.2019.2928975 |
23 | Ge C, Gu IY, Jakola AS, et al. Deep Learning and multi-sensor fusion for glioma classification using multistream 2D convolutional networks[C]. International Conference of the IEEE Engineering in Medicine and Biology Society, 2018: 5894-5897. |
24 |
Wu Y , Hao H , Li J , et al. Four-sequence maximum entropy discrimination algorithm for glioma grading[J]. IEEE Access, 2019, 7: 52246- 52256.
doi: 10.1109/ACCESS.2019.2910849 |
25 | Ye F, Pu J, Wang J, et al. Glioma grading based on 3D multimodal convolutional neural network and privileged learning[C]. Bioinformatics and Biomedicine, 2017: 759-763. |
26 | Pang H, Liu C, Zhao Z, et al. Glioma grading based on gentle-adaboost algorithm and radiomics[C]. Ubiquitous Intelligence and Computing, 2017: 1-5. |
27 | Bonte S, Goethals I, Van Holen R, et al. Individual Prediction of brain tumor histological grading using radiomics on structural MRI[C]. Nuclear Science Symposium and Medical Imaging Conference, 2017: 1-3. |
28 | Latif G, Butt MM, Khan AH, et al. Multiclass brain Glioma tumor classification using block-based 3D Wavelet features of MR images [C]. International Conference on Electrical and Electronic Engineering, 2017: 333-337. |
29 | Er FC, Firat Z, Kovanlikaya I, et al. Multivariate discriminant analysis of multiparametric brain MRI to differentiate high grade and low grade gliomas—A computer-aided diagnosis development study[C]. Bioinformatics and Bioengineering, 2013: 1-5. |
30 | 张原理, 程豫菲, 崔振杰, 等. 磁共振成像分级胶质瘤的新方法及结果[J]. 现代肿瘤医学, 2017, 25 (24): 4054- 4058. |
ZHANG Yuanli , CHENG Yufei , CUI Zhenjie , et al. Ti A new method of magnetic resonance imaging in grading of gliomas and the results[J]. Journal of Modern Oncology, 2017, 25 (24): 4054- 4058. | |
31 | 吴聪, 黄中勇, 殷浩, 等. 基于卷积神经网络的脑胶质瘤分级[J]. 湖北工业大学学报, 2017, 32 (4): 60- 64. |
32 | Wangaryattawanich P, Wang J, Thomas G, et al. Survival analysis of pre-operative GBM patients by using quantitative image features[C]. International Conference on Control Decision and Information Technologies, 2014: 625-627. |
33 | Agravat R, Raval MS. Prediction of overall survival of brain tumor patients [C]. 2019 IEEE Region 10 Conference, 2019: 31-35. |
34 |
欧阳一彬, 莫业和, 何青龙, 等. 影响脑胶质瘤患者生存和预后的相关因素分析[J]. 河北医药, 2018, 40 (10): 1524- 1526.
doi: 10.3969/j.issn.1002-7386.2018.10.019 |
OUYANG Yibing , MO Yehe , HE Qinglong , et al. Analysis for related factors influencing the survival and prognosis of patients with brain glioma[J]. Hebei Medical Journal, 2018, 40 (10): 1524- 1526.
doi: 10.3969/j.issn.1002-7386.2018.10.019 |
|
35 | 彭世义, 李艳萍, 陈志萍, 等. WHOⅡ级脑胶质瘤预后影响因素分析[J]. 中国肿瘤临床, 2018, 45 (8): 402- 407. |
36 | 葛培林, 钟云萍. 低级别脑胶质瘤预后分析[J]. 肿瘤防治研究, 2005, 32 (7): 438- 439. |
GE Peilin , ZHONG Yunping . Prognosis analysis of low grade gliomas[J]. Cancer Research On Prevention and Treatment, 2005, 32 (7): 438- 439. | |
37 | 刘桂云, 江蓉, 徐晨阳, 等. 高级别脑胶质瘤综合治疗后生存分析[J]. 中南大学学报(医学版), 2018, 43 (4): 388- 393. |
LIU Guiyun , JIANG Rong , XU Chenyang , et al. Survival analysis for high-grade glioma patients who received comprehensive treatment[J]. Journal of Central South University(Medical Science), 2018, 43 (4): 388- 393. | |
38 | Diller EE, Cao S, Ey B, et al. Predicted disease compositions of human gliomas estimated from multiparametric MRI can predict endothelial proliferation, tumor grade, and overall survival[EB/OL]. [2019-08-06]. https: //arxiv.org/abs/1908.02334v1 |
39 | Goyaouti J, Calmon R, Orlhac F, et al. Can structural MRI radiomics predict DIPG histone H3 mutation and patient overall survival at diagnosis time[C]. IEEE-EMBS International Conference on Biomedical and Health Informatics, 2019: 1-4. |
40 | Wang S, Dai C, Mo Y, et al. Automatic brain tumor segmentation and biophysics-guided survival prediction[C]. MICCAI BrainLes, 2020: 61-72. |
41 | Alex V, Safwan M, Krishnamurthi G, et al. Automatic segmentation and overall survival prediction in gliomas using fully convolutional neural network and texture analysis[C]. MICCAI BrainLes, 2017: 216-225. |
42 | Chaddad A, Desrosiers C, Toews M, et al. Radiomic analysis of multi-contrast brain MRI for the prediction of survival in patients with glioblastoma multiforme[C]. International Conference of the IEEE Engineering in Medicine and Biology Society, 2016: 4035-4038. |
43 | Agravat R, Raval MS. Brain tumor segmentation and survival prediction[C]. MICCAI BrainLes, 2020: 338-348. |
44 | Amian M, Soltaninejad M. Multi-Resolution 3D CNN for MRI brain tumor segmentation and survival prediction[C]. BrainLes, 2019, 2020: 221-230. |
45 | Chato L, Latifi S. Machine learning and deep learning techniques to predict overall survival of brain tumor patients using MRI images[C]. Bioinformatics and Bioengineering, 2017: 9-14. |
46 | Chato L, Chow E, Latifi S, et al. Wavelet transform to improve accuracy of a prediction model for overall survival time of brain tumor patients based on MRI images[C]. IEEE International Conference on Healthcare Informatics, 2018: 441-442. |
47 | 熊正平, 杨树仁. 分子影像学[J]. 国际医学放射学杂志, 2002, 25 (3): 131- 134. |
48 | 折刚刚, 郝文炯. 胶质母细胞瘤MGMT启动子甲基化的影像征象研究进展[J]. 中国微侵袭神经外科杂志, 2018, 23 (9): 428- 431. |
49 |
魏炜, 崔洛, 解立志, 等. 基于MRI影像组学预测胶质母细胞瘤MGMT基因启动子甲基化状态的应用[J]. 影像诊断与介入放射学, 2018, 27 (3): 179- 184.
doi: 10.3969/j.issn.1005-8001.2018.03.001 |
WEI Wei , CUI Luo , XIE Lizhi , et al. MR-based radiomics method for prediction of MGMT promoter methylation in glioblastoma[J]. Diagnostic Imaging & Interventional Radiology, 2018, 27 (3): 179- 184.
doi: 10.3969/j.issn.1005-8001.2018.03.001 |
|
50 |
Mertz L . Molecular imaging probes spy on the body's inner workings: miniaturized microscopes, microbubbles, 7-and 15-T scanners, diffusion-tensor MRI, and other molecular-imaging technologies are pushing molecular imaging into the future[J]. IEEE Pulse, 2013, 4 (1): 18- 22.
doi: 10.1109/MPUL.2012.2228809 |
51 | Liu T, Wu G, Yu J, et al. A mRMRMSRC feature selection method for radiomics approach[C]. International Conference of the IEEE Engineering in Medicine and Biology Society, 2017: 616-619. |
52 |
Paech D , Windschuh J , Oberhollenzer J , et al. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T[J]. Neuro Oncol, 2018, 20 (12): 1661- 1671.
doi: 10.1093/neuonc/noy073 |
53 |
Lu C , Hsu FT , Hsieh KL , et al. Machine learning-based radiomics for molecular subtyping of gliomas[J]. Clin Cancer Res, 2018, 24 (18): 4429- 4436.
doi: 10.1158/1078-0432.CCR-17-3445 |
54 |
Zhou H , Vallieres M , Bai HX , et al. MRI features predict survival and molecular markers in diffuse lower-grade gliomas[J]. Neuro Oncol, 2017, 19 (6): 862- 870.
doi: 10.1093/neuonc/now256 |
55 |
Zhang B , Chang K , Ramkissoon S , et al. Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas[J]. Neuro Oncol, 2017, 19 (1): 109- 117.
doi: 10.1093/neuonc/now121 |
56 |
Chen L , Zhang H , Lu J , et al. Multi-label nonlinear matrix completion with transductive multi-task feature selection for joint MGMT and IDH1 status prediction of patient with high-grade gliomas[J]. IEEE Trans Med Imaging, 2018, 37 (8): 1775- 1787.
doi: 10.1109/TMI.2018.2807590 |
57 | Levner I, Drabycz S, Roldan G, et al. Predicting MGMT Methylation Status of Glioblastomas from MRI Texture[C]. Medical Image Computing and Computer-Assisted Intervention, 2009: 522-530. |
58 |
Chaddad A , Desrosiers C , Abdulkarim B , et al. Predicting the gene status and survival outcome of lower grade glioma patients with multimodal MRI features[J]. IEEE Access, 2019, 7: 75976- 75984.
doi: 10.1109/ACCESS.2019.2920396 |
59 | Ahmad A, Sarkar S, Shah A, et al. Predictive and discriminative localization of IDH genotype in high grade gliomas using deep convolutional neural nets[C]. International Symposium on Biomedical Imaging, 2019: 372-375. |
60 |
Tixier F , Um H , Bermudez D , et al. Preoperative MRI-radiomics features improve prediction of survival in glioblastoma patients over MGMT methylation status alone[J]. Oncotarget, 2019, 10 (6): 660- 672.
doi: 10.18632/oncotarget.26578 |
61 |
Wu G , Chen Y , Wang Y , et al. Sparse representation-based radiomics for the diagnosis of brain tumors[J]. IEEE Trans Med Imaging, 2018, 37 (4): 893- 905.
doi: 10.1109/TMI.2017.2776967 |
[1] | Wei ZHANG,Wenhao TAN,Yibin LI. Locmotion control of quadruped robot based on deep reinforcement learning: review and prospect [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 61-66. |
|