Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (8): 88-94.doi: 10.6040/j.issn.1671-7554.0.2020.0604

• Special Topic on Brain Science and Brain Like Intelligence • Previous Articles     Next Articles

The new strategies of targeting SUMOylation in the treatment of glioma

Anjing CHEN1,2,*(),Xun ZHANG1,2   

  1. 1. Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China
    2. Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, Shandong, China
  • Received:2020-04-15 Online:2020-08-01 Published:2020-08-07
  • Contact: Anjing CHEN E-mail:chenaj@sdu.edu.cn

Abstract:

Small ubiquitin-like modification (SUMOylation), a dynamic process of post-translational modification, involves a series of physiological changes within the cells. SUMOylation also plays an important role in the pathological progresses of a number of cancers including the fatal disease, glioma. In this essay, we reviewed the key aspects of SUMOylation in association with glioma from the literatures and highlighted that some potential targets were expected to be therapeutic strategies in the treatment of glioma.

Key words: Glioma, SUMOylation, Malignant progression, Targeted therapy

CLC Number: 

  • R456

Fig.1

SUMOylation of glioma participates in the regulation of multiple cellular processes and leads to malignant progression"

1 Stupp R , Hegi ME , Mason WP , et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomized phase III study: 5-year analysis of the EORTC-NCIC trial[J]. Lancet Oncol, 2009, 10 (5): 459- 466.
doi: 10.1016/S1470-2045(09)70025-7
2 Polivka JJr , Polivka J , Holubec L , et al. Advances in experimental targeted therapy and immunotherapy for patients with glioblastoma multiforme[J]. Anticancer Res, 2017, 37 (1): 21- 33.
3 Mahajan R , Delphin C , Guan T , et al. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2[J]. Cell, 1997, 88 (1): 97- 107.
doi: 10.1016/S0092-8674(00)81862-0
4 Hendriks I A , Vertegaal A C . A comprehensive compilation of SUMO proteomics[J]. Nat Rev Mol Cell Biol, 2016, 17 (9): 581- 595.
doi: 10.1038/nrm.2016.81
5 Eifler K , Vertegaal ACO . SUMOylation-mediated regulation of cell cycle progression and cancer[J]. Trends Biochem. Sci, 2015, 40 (12): 779- 793.
doi: 10.1016/j.tibs.2015.09.006
6 Bayer P , Arndt A , Metzger S , et al. Structure determination of the small ubiquitin-related modifier SUMO-1[J]. J Mol Biol, 1998, 280 (2): 275- 286.
doi: 10.1006/jmbi.1998.1839
7 Shen Z , Pardington-Purtymun PE , Comeaux JC , et al. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins[J]. Genomics, 1996, 36 (2): 271- 279.
doi: 10.1006/geno.1996.0462
8 Boddy MN , Howe K , Etkin LD , et al. PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukemia[J]. Oncogene, 1996, 13 (5): 971- 982.
9 Matunis MJ , Coutavas E , Blobel G . A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex[J]. J Cell Biol, 1996, 135 (6 Pt 1): 1457- 1470.
10 Lapenta V , Chiurazzi P , van der Spek P , et al. SMT3A, a human homologue of the S. cerevisiae SMT3 gene, maps to chromosome 21qter and defines a novel gene family[J]. Genomics, 1997, 40 (2): 362- 366.
doi: 10.1006/geno.1996.4556
11 Johnson ES . Protein modification by SUMO[J]. Annu Rev Biochem, 2004, 73: 355- 382.
doi: 10.1146/annurev.biochem
12 Evdokimov E , Sharma P , Lockett SJ , et al. Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3[J]. J Cell Sci, 2008, 121 (Pt 24): 4106- 4113.
13 Owerbach D , McKay EM , Yeh ET , et al. A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation[J]. Biochem Biophys Res Commun, 2005, 337 (2): 517- 520.
doi: 10.1016/j.bbrc.2005.09.090
14 Hickey CM , Wilson NR , Hochstrasser M . Function and regulation of SUMO proteases[J]. Nat Rev Mol Cell Biol, 2012, 13 (12): 755- 766.
doi: 10.1038/nrm3478
15 Olsen SK , Capili AD , Lu X , et al. Active site remodelling accompanies thioester bond formation in the SUMO E1[J]. Nature, 2010, 463 (7283): 906- 912.
doi: 10.1038/nature08765
16 Gong L , Kamitani T , Fujise K , et al. Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9[J]. J Biol Chem, 1997, 272 (45): 28198- 28201.
doi: 10.1074/jbc.272.45.28198
17 Desterro JM , Thomson J , Hay RT . Ubch9 conjugates SUMO but not ubiquitin[J]. FEBS Lett, 1997, 417 (3): 297- 300.
doi: 10.1016/S0014-5793(97)01305-7
18 Rodriguez MS , Dargemont C , Hay RT . SUMO-1conjugation in vivo requires both a consensus modification motif and nuclear targeting[J]. J Biol Chem, 2001, 276 (16): 12654- 12659.
doi: 10.1074/jbc.M009476200
19 Johnson ES , Gupta AA . An E3-like factor that promotes SUMO conjugation to the yeast septins[J]. Cell, 2001, 106 (6): 735- 744.
doi: 10.1016/S0092-8674(01)00491-3
20 Gong L , Millas S , Maul GG , et al. Differential regulation of sentrinized proteins by a novel sentrin-specific protease[J]. J Biol Chem, 2000, 275 (5): 3355- 3359.
doi: 10.1074/jbc.275.5.3355
21 Schulz S , Chachami G , Kozaczkiewicz L , et al. Ubiquitin-specific protease-like 1(USPL1) is a SUMO isopeptidase with essential, non-catalytic functions[J]. EMBO Rep, 2012, 13 (10): 930- 938.
doi: 10.1038/embor.2012.125
22 Bellail AC , Olson JJ , Hao C . SUMO1 modification stabilizes CDK6 protein and drives the cell cycle and glioblastoma progression[J]. Nature Commun, 2014, 5: 4234.
doi: 10.1038/ncomms5234
23 Yang W , Wang L , Roehn G , et al. Small ubiquitin-like modifier 1-3 conjugation[corrected] is activated in human astrocytic brain tumors and is required for glioblastoma cell survival[J]. Cancer Sci, 2013, 104 (1): 70- 77.
doi: 10.1111/cas.12047
24 Li H , Niu H , Peng Y , et al. Ubc9 promotes invasion and metastasis of lung cancer cells[J]. Oncol Rep, 2013, 29 (4): 1588- 1594.
doi: 10.3892/or.2013.2268
25 Shao DF , Wang XH , Li ZY , et al. High-level SAE2 promotes malignant phenotype and predicts outcome in gastric cancer[J]. Am J Cancer Res, 2015, 5 (2): 140- 154.
26 Zhang H , Kuai X , Ji Z , et al. Over-expression of small ubiquitin-related modifier-1 and sumoylated p53 in colon cancer[J]. Cell Biochem Biophys, 2013, 67 (3): 1081- 1087.
doi: 10.1007/s12013-013-9612-x
27 Guo WH , Yuan LH , Xiao ZH , et al. Overexpression of SUMO-1 in hepatocellular carcinoma: a latent target for diagnosis and therapy of hepatoma[J]. J Cancer Res Clin Oncol, 2011, 137 (3): 533- 541.
doi: 10.1007/s00432-010-0920-x
28 Chien W , Lee KL , Ding LW , et al. PIAS4 is an activator of hypoxia signaling via VHL suppression during growth of pancreatic cancer cells[J]. Br J Cancer, 2013, 109 (7): 1795- 1804.
doi: 10.1038/bjc.2013.531
29 Sternsdorf T , Jensen K , Will H . Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1[J]. J Cell Biol, 1997, 139 (7): 1621- 1634.
doi: 10.1083/jcb.139.7.1621
30 Zhong S , Muller S , Ronchetti S , et al. Role of SUMO-1-modified PML in nuclear body formation[J]. Blood, 2000, 95 (9): 2748- 2752.
doi: 10.1182/blood.V95.9.2748.009k31a_2748_2752
31 Altmannova V , Kolesar P , Krejci L . SUMO wrestles with recombination[J]. Biomolecules, 2012, 2 (3): 350- 375.
doi: 10.3390/biom2030350
32 Bonne-Andrea C , Kahli M , Mechali F , et al. SUMO2/3 modification of cyclin E contributes to the control of replication origin firing[J]. Nat Commun, 2013, 4: 1850.
doi: 10.1038/ncomms2875
33 Carter S , Bischof O , Dejean A , et al. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53[J]. Nat Cell Biol, 2007, 9 (4): 428- 435.
doi: 10.1038/ncb1562
34 Renner F , Moreno R , Schmitz ML . SUMOylation-dependent localization of IKKepsilon in PML nuclear bodies is essential for protection against DNA-damage-triggered cell death[J]. Mol Cell, 2010, 37 (4): 503- 515.
doi: 10.1016/j.molcel.2010.01.018
35 Potts PR , Yu H . The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins[J]. Nat Struct Mol Biol, 2007, 14 (7): 581- 590.
doi: 10.1038/nsmb1259
36 Li J , Xu Y , Long XD , et al. Cbx4 governs HIF-1alpha to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity[J]. Cancer Cell, 2014, 25 (1): 118- 131.
doi: 10.1016/j.ccr.2013.12.008
37 Cashman R , Cohen H , Ben-Hamo R , et al. SENP5 mediates breast cancer invasion via a TGFbetaRI SUMOylation cascade[J]. Oncotarget, 2014, 5 (4): 1071- 1082.
doi: 10.18632/oncotarget.1783
38 Mao H , Lebrun DG , Yang J , et al. Deregulated signaling pathways in glioblastoma multiforme: Molecular mechanisms and therapeutic targets[J]. Cancer Invest, 2012, 30 (1): 48- 56.
doi: 10.3109/07357907.2011.630050
39 Soares IN , Caetano FA , Pinder J , et al. Regulation of stress-inducible phosphoprotein 1 nuclear retention by protein inhibitor of activated STAT PIAS1[J]. Mol Cell Proteomics, 2013, 12 (11): 3253- 3270.
doi: 10.1074/mcp.M113.031005
40 Nakayama KI , Nakayama K . Ubiquitin ligases: Cell-cycle control and cancer[J]. Nat Rev Cancer, 2006, 6 (5): 369- 381.
doi: 10.1038/nrc1881
41 Bernstock JD , Ye D , Gessler FA , et al. Topotecan is a potent inhibitor of SUMOylation in glioblastoma multiforme and alters both cellular replication and metabolic programming[J]. Sci Rep, 2017, 7 (1): 7425.
42 Xu H , Rahimpour S , Nesvick CL , et al. Activation of hypoxia signaling induces phenotypic transformation of glioma cells: Implications for bevacizumab antiangiogenic therapy[J]. Oncotarget, 2015, 6 (14): 11882- 11893.
doi: 10.18632/oncotarget.3592
43 Yang Y , Xia Z , Wang X , et al. Small-molecule inhibitors targeting protein sumoylation as novel anticancer compounds[J]. Mol Pharmcol, 2018, 94 (2): 885- 894.
doi: 10.1124/mol.118.112300
44 Chen Y , Wen D , Huang Z , et al. 2-(4-Chlorophenyl)-2-oxoethyl 4-benzamidobenzoate derivatives, a novel class of SENP1 inhibitors: virtual screening, synthesis and biological evaluation[J]. Bioorg Med Chem Lett, 2012, 22 (22): 6867- 6870.
doi: 10.1016/j.bmcl.2012.09.037
45 Brave M , Dagher R , Farrell A , et al. Topotecan in combination with cisplatin for the treatment of stage IVB, recurrent, or persistent cervical cancer[J]. J Oncol, 2006, 20 (11): 1401- 1404.
46 Pommier Y . Topoisomerase I inhibitors: camptothecins and beyond[J]. J Nat Rev Cancer, 2006, 6 (10): 789.
doi: 10.1038/nrc1977
47 Ling YH , Donato NJ , Perez-Soler R . Sensitivity to topoisomerase I inhibitors and cisplatin is associated with epidermal growth factor receptor expression in human cervical squamous carcinoma ME180 sublines[J]. Cancer Chemother Pharmacol, 2001, 47 (6): 473- 480.
doi: 10.1007/s002800000239
48 Hirohama M , Kumar A , Fukuda I , et al. Spectomycin B1 as a novel SUMOylation inhibitor that directly binds to SUMO E2[J]. ACS Chem Biol, 2013, 8 (12): 2635- 2642.
doi: 10.1021/cb400630z
49 Schneekloth JS Jr . Drug discovery: controlling protein SUMOylation[J]. Nat Chem Biol, 2017, 13 (11): 1141.
doi: 10.1038/nchembio.2496
50 Fukuda I , Ito A , Hirai G , et al. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate[J]. Chem Biol, 2009, 16 (2): 133- 140.
doi: 10.1016/j.chembiol.2009.01.009
51 Fukuda I , Ito A , Uramoto M , et al. Kerriamycin B inhibits protein SUMOylation[J]. J Antibiot, 2009, 62 (4): 221.
doi: 10.1038/ja.2009.10
52 Takemoto M , Kawamura Y , Hirohama M , et al. Inhibition of protein SUMOylation by davidiin, an ellagitannin from Davidia involucrata[J]. J Antibiot, 2014, 67 (4): 335.
doi: 10.1038/ja.2013.142
53 Suzawa M , Miranda DA , Ramos KA , et al. A gene-expression screen identifies a non-toxic sumoylation inhibitor that mimics SUMO-less human LRH-1 in liver[J]. Elife, 2015, 4: e09003.
doi: 10.7554/eLife.09003
54 Zhao B , Villhauer EB , Bhuripanyo K , et al. SUMO-mimicking peptides inhibiting protein SUMOylation[J]. Chembiochem, 2014, 15 (18): 2662- 2666.
doi: 10.1002/cbic.201402472
55 Wu J , Lei H , Zhang J , et al. Momordin Ic, a new natural SENP1 inhibitor, inhibits prostate cancer cell proliferation[J]. Oncotarget, 2016, 7 (37): 58995- 59005.
doi: 10.18632/oncotarget.10636
56 Bernstock JD , Lee Y , Peruzzotti-Jametti L , et al. A novel quantitative high-throughput screen identifies drugs that both activate SUMO conjugation via the inhibition of microRNAs 182 and 183 and facilitate neuroprotection in a model of oxygen and glucose deprivation[J]. J Cereb Blood Flow Metab, 2016, 36 (2): 426- 441.
doi: 10.1177/0271678X15609939
57 Huang W , He T , Chai C , et al. Triptolide inhibits the proliferation of prostate cancer cells and down-regulates SUMO-specific protease 1 expression[J]. PLoS One, 2012, 7 (5): e37693.
doi: 10.1371/journal.pone.0037693
[1] Tao JIANG. The application of brain-like intelligence in the frontiers of brain science [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 10-13.
[2] Gang LI,Hao XUE,Wei QIU,Rongrong ZHAO. Research advances in the formation of glioma immunosuppressive microenvironment [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 67-73.
[3] Qiang WU,Zekun HE,Ju LIU,Xiaomeng CUI,Shuang SUN,Wei SHI. A research on multi-modal MRI analysis based on machine learning for brain glioma [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 81-87.
[4] Chuanzhu YAN,Wei WANG,Kunqian JI,Yuying ZHAO. Mitochondrial dysfunction and related brain diseases [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 34-41.
[5] XU Jixi, CHEN Weijian. Diffuse midline glioma with H3 K27M mutation in the spinal cord: a case report [J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 96-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 1 -6 .
[2] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 7 -14 .
[3] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 15 -23 .
[4] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 24 -31 .
[5] MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui. Effect of miR-27b-3p regulating SMAD1 on osteosarcoma cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 32 -37 .
[6] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 38 -46 .
[7] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 47 -52 .
[8] XIAO Juan, XIAO Qiang, CONG Wei, LI Ting, DING Shouluan, ZHANG Yuan, SHAO Chunchun, WU Mei, LIU Jianing, JIA Hongying. Comparison of diagnostic efficacy of two kinds of thyroid imagine reporting and data systems[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 53 -59 .
[9] DING Xiangyun, YU Qingmei, ZHANG Wenfang, ZHUANG Yuan, HAO Jing. Correlation of the expression of insulin-like growth factor II in granulosa cells and ovulation induction outcomes of 84 patients with polycystic ovary syndrome[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 60 -66 .
[10] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 67 -71 .