Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (8): 34-41.doi: 10.6040/j.issn.1671-7554.0.2020.0725
• Special Topic on Brain Science and Brain Like Intelligence • Previous Articles Next Articles
Chuanzhu YAN*(),Wei WANG,Kunqian JI,Yuying ZHAO
CLC Number:
1 |
Wiemerslage L , Lee D . Quantification of mitochondrial morphology in neurites of dopaminergic neurons using multiple parameters[J]. J Neurosci Methods, 2016, 262: 56- 65.
doi: 10.1016/j.jneumeth |
2 | Ernster L , Schatz G . Mitochondria: a historical review[J]. The Journal of Cell Biology, 1981, 91 (3 Pt 2): 227- 255. |
3 |
Luft R , Ikkos D , Palmieri G , et al. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study[J]. J Clin Invest, 1962, 41: 1776- 804.
doi: 10.1172/JCI104637 |
4 |
Anderson S , Bankier AT , Barrell BG , et al. Sequence and organization of the human mitochondrial genome[J]. Nature, 1981, 290 (5806): 457- 465.
doi: 10.1038/290457a0 |
5 |
Holt IJ , Harding AE , Cooper JM , et al. Mitochondrial myopathies: clinical and biochemical features of 30 patients with major deletions of muscle mitochondrial DNA[J]. Ann Neurol, 1989, 26 (6): 699- 708.
doi: 10.1002/ana.410260603 |
6 |
Holt IJ , Harding AE , Morgan-Hughes JA . Deletions of muscle mitochondrial DNA in mitochondrial myopathies: sequence analysis and possible mechanisms[J]. Nucleic Acids Res, 1989, 17 (12): 4465- 4469.
doi: 10.1093/nar/17.12.4465 |
7 |
Bris C , Goudenege D , Desquiret-Dumas V , et al. Bioinformatics tools and databases to assess the pathogenicity of mitochondrial DNA variants in the field of next generation sequencing[J]. Front Genet, 2018, 9: 632.
doi: 10.3389/fgene.2018.00632 |
8 |
Luft R . The development of mitochondrial medicine[J]. P Natl Acad Sci Usa, 1994, 91 (19): 8731- 8738.
doi: 10.1073/pnas.91.19.8731 |
9 |
El-Hattab AW , Adesina AM , Jones J , et al. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options[J]. Mol Genet Metab, 2015, 116 (1-2): 4- 12.
doi: 10.1016/j.ymgme |
10 |
Whitehead MT , Wien M , Lee B , et al. Black Toenail Sign in MELAS Syndrome[J]. Pediatr Neurol, 2017, 75: 61- 65.
doi: 10.1016/j.pediatrneurol.2017.06.017 |
11 |
El-Hattab AW , Emrick LT , Hsu JW , et al. Impaired nitric oxide production in children with MELAS syndrome and the effect of arginine and citrulline supplementation[J]. Mol Genet Metab, 2016, 117 (4): 407- 412.
doi: 10.1016/j.ymgme.2016.01.010 |
12 |
Goto Y , Nonaka I , Horai S . A mutation in the tRNA (Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies[J]. Nature, 1990, 348 (6302): 651- 653.
doi: 10.1038/348651a0 |
13 | Rodriguez MC , MacDonald JR , Mahoney DJ , et al. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders[J]. Muscle Nerve, 2007, 35 (2): 235- 242. |
14 |
Gerards M , Sallevelt SCEH , Smeets HJM . Leigh syndrome: Resolving the clinical and genetic heterogeneity paves the way for treatment options[J]. Mol Genet Metab, 2016, 117 (3): 300- 312.
doi: 10.1016/j.ymgme.2015.12.004 |
15 |
Bonfante E , Koenig MK , Adejumo RB , et al. The neuroimaging of Leigh syndrome: case series and review of the literature[J]. Pediatr Radiol, 2016, 46 (4): 443- 451.
doi: 10.1007/s00247-015-3523-5 |
16 |
Schubert Baldo M , Vilarinho L . Molecular basis of Leigh syndrome: a current look[J]. Orphanet J Rare Dis, 2020, 15 (1): 31.
doi: 10.1186/s13023-020-1297-9 |
17 |
Sofou K , De Coo IF , Isohanni P , et al. A multicenter study on Leigh syndrome: disease course and predictors of survival[J]. Orphanet J Rare Dis, 2014, 9: 52.
doi: 10.1186/1750-1172-9-52 |
18 |
Remes AM , Karppa M , Moilanen JS , et al. Epidemiology of the mitochondrial DNA 8344A>G mutation for the myoclonus epilepsy and ragged red fibres (MERRF) syndrome[J]. J Neurol Neurosur Ps, 2003, 74 (8): 1158- 1159.
doi: 10.1136/jnnp.74.8.1158 |
19 |
Finsterer J , Zarrouk-Mahjoub S , Shoffner JM . MERRF classification: Implications for diagnosis and clinical trials[J]. Pediatr Neurol, 2018, 80: 8- 23.
doi: 10.1016/j.pediatrneurol.2017.12.005 |
20 |
Juaristi L , Irigoyen C , Quiroga J . Neuropathy, ataxia, and retinitis pigmentosa syndrome: a multidisciplinary diagnosis[J]. Retin Cases Brief Rep, 2018.
doi: 10.1097/ICB.0000000000000835 |
21 |
Tatuch Y , Robinson BH . The mitochondrial DNA mutation at 8993 associated with NARP slows the rate of ATP synthesis in isolated lymphoblast mitochondria[J]. Biochem Bioph Res Co, 1993, 192 (1): 124- 128.
doi: 10.1006/bbrc.1993.1390 |
22 |
Claeys KG , Abicht A , Hausler M , et al. Novel genetic and neuropathological insights in neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP)[J]. Muscle Nerve, 2016, 54 (2): 328- 333.
doi: 10.1002/mus.25125 |
23 | Rahman S , Copeland WC . POLG-related disorders and their neurological manifestations[J]. Nat Rev Neurol, 2019, 15 (1): 40- 52. |
24 | Rose HR , Al Khalili Y . Alpers-Huttenlochen Syndrome (AHS, Alper Disease), In: StatPearls[M]. Treasure Island (FL): StatPearls Publishing, 2020. |
25 |
Lane CA , Hardy J , Schott JM . Alzheimer's disease[J]. Eur J Neurol, 2018, 25 (1): 59- 70.
doi: 10.1111/ene.13439 |
26 |
Swerdlow RH . Mitochondria and mitochondrial cascades in Alzheimer's disease[J]. J Alzheimers Dis, 2018, 62 (3): 1403- 1416.
doi: 10.3233/JAD-170585 |
27 |
Terada T , Obi T , Bunai T , et al. In vivo mitochondrial and glycolytic impairments in patients with Alzheimer disease[J]. Neurology, 2020, 94 (15): 1592- 1604.
doi: 10.1212/WNL.0000000000009249 |
28 |
Agnihotri A , Aruoma OI . Alzheimer's disease and parkinson's disease: a nutritional toxicology perspective of the impact of oxidative stress, mitochondrial dysfunction, nutrigenomics and environmental chemicals[J]. J Am Coll Nutr, 2020, 39 (1): 16- 27.
doi: 10.1080/07315724.2019.1683379 |
29 |
Luque-Contreras D , Carvajal K , Toral-Rios D , et al. Oxidative stress and metabolic syndrome: cause or consequence of Alzheimer's disease?[J]. Oxid Med Cell Longev, 2014, 2014: 497802.
doi: 10.1155/2014/497802 |
30 | Vila M , Przedborski S . Genetic clues to the pathogenesis of Parkinson's disease[J]. Nat Med, 2004, 10 (Suppl): 58- 62. |
31 |
Pickrell AM , Youle RJ . The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease[J]. Neuron, 2015, 85 (2): 257- 273.
doi: 10.1016/j.neuron.2014.12.007 |
32 |
Krebiehl G , Ruckerbauer S , Burbulla LF , et al. Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1[J]. PLoS One, 2010, 5 (2): e9367.
doi: 10.1371/journal.pone.0009367 |
33 |
Repici M , Giorgini F . DJ-1 in Parkinson's disease: clinical insights and therapeutic perspectives[J]. J Clin Med, 2019, 8 (9): 1377.
doi: 10.3390/jcm8091377 |
34 |
Das NR , Sharma SS . Cognitive impairment associated with Parkinson's disease: role of mitochondria[J]. Curr Neuropharmacol, 2016, 14 (6): 584- 592.
doi: 10.2174/1570159X14666160104142349 |
35 |
Bates GP , Dorsey R , Gusella JF , et al. Huntington disease[J]. Nat Rev Dis Primers, 2015, 1: 15005.
doi: 10.1038/nrdp |
36 |
Panov AV , Gutekunst CA , Leavitt BR , et al. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines[J]. Nat Neurosci, 2002, 5 (8): 731- 736.
doi: 10.1038/nn884 |
37 |
Di Cristo F , Finicelli M , Digilio FA , et al. Meldonium improves Huntington's disease mitochondrial dysfunction by restoring peroxisome proliferator-activated receptor gamma coactivator 1alpha expression[J]. J Cell Physiol, 2019, 234 (6): 9233- 9246.
doi: 10.1002/jcp.27602 |
38 |
Franco-Iborra S , Vila M , Perier C . Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson's disease and Huntington's disease[J]. Front Neurosci, 2018, 12: 342.
doi: 10.3389/fnins.2018.00342 |
39 |
Orr AL , Li S , Wang CE , et al. N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking[J]. J Neurosci, 2008, 28 (11): 2783- 2792.
doi: 10.1523/JNEUROSCI.0106-08.2008 |
40 |
McColgan P , Tabrizi SJ . Huntington's disease: a clinical review[J]. Eur J Neurol, 2018, 25 (1): 24- 34.
doi: 10.1111/ene.13413 |
41 |
Holper L , Lan MJ , Brown PJ , et al. Brain cytochrome-c-oxidase as a marker of mitochondrial function: A pilot study in major depression using NIRS[J]. Depress Anxiety, 2019, 36 (8): 766- 779.
doi: 10.1002/da.22913 |
42 |
Kuffner K , Triebelhorn J , Meindl K , et al. Major Depressive Disorder is Associated with Impaired Mitochondrial Function in Skin Fibroblasts[J]. Cells, 2020, 9 (4): 884.
doi: 10.3390/cells9040884 |
43 |
Holper L , Ben-Shachar D , Mann JJ . Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease[J]. Neuropsychopharmacol, 2019, 44 (5): 837- 849.
doi: 10.1038/s41386-018-0090-0 |
44 |
Brown PJ , Brennan N , Ciarleglio A , et al. Declining skeletal muscle mitochondrial function associated with increased risk of depression in later life[J]. Am J Geriat Psychiat, 2019, 27 (9): 963- 971.
doi: 10.1016/j.jagp.2019.03.022 |
45 |
De Crescenzo F , Ciliberto M , Menghini D , et al. Is (18)F-FDG-PET suitable to predict clinical response to the treatment of geriatric depression? A systematic review of PET studies[J]. Aging Ment Health, 2017, 21 (9): 889- 894.
doi: 10.1080/13607863.2016.1247413 |
46 | Stein DJ , Scott KM , de Jonge P , et al. Epidemiology of anxiety disorders: from surveys to nosology and back[J]. Dialogues Clin Neurosci, 2017, 19 (2): 127- 136. |
47 |
Filiou MD , Sandi C . Anxiety and brain mitochondria: a bidirectional crosstalk[J]. Trends Neurosci, 2019, 42 (9): 573- 588.
doi: 10.1016/j.tins.2019.07.002 |
48 |
Misiewicz Z , Iurato S , Kulesskaya N , et al. Multi-omics analysis identifies mitochondrial pathways associated with anxiety-related behavior[J]. PLoS Genet, 2019, 15 (9): e1008358.
doi: 10.1371/journal.pgen.1008358 |
49 |
Papilloud A , Guillot de Suduiraut I , Zanoletti O , et al. Peripubertal stress increases play fighting at adolescence and modulates nucleus accumbens CB1 receptor expression and mitochondrial function in the amygdala[J]. Transl Psychiat, 2018, 8 (1): 156.
doi: 10.1038/s41398-018-0215-6 |
50 |
van der Kooij MA , Hollis F , Lozano L , et al. Diazepam actions in the VTA enhance social dominance and mitochondrial function in the nucleus accumbens by activation of dopamine D1 receptors[J]. Mol Psychiatr, 2018, 23 (3): 569- 578.
doi: 10.1038/mp.2017.135 |
51 |
Manivasagam T , Arunadevi S , Essa MM , et al. Role of oxidative stress and antioxidants in autism[J]. Adv Neurobiol, 2020, 24: 193- 206.
doi: 10.1007/978-3-030-30402-7_7 |
52 |
La Barbera L , Vedele F , Nobili A , et al. Neurodevelopmental disorders: functional role of ambra1 in autism and schizophrenia[J]. Mol Neurobiol, 2019, 56 (10): 6716- 6724.
doi: 10.1007/s12035-019-1557-7 |
53 |
Schwede M , Nagpal S , Gandal MJ , et al. Strong correlation of downregulated genes related to synaptic transmission and mitochondria in post-mortem autism cerebral cortex[J]. J Neurodev Disord, 2018, 10 (1): 18.
doi: 10.1186/s11689-018-9237-x |
54 |
Carrasco M , Salazar C , Tiznado W , et al. Alterations of mitochondrial biology in the oral mucosa of Chilean children with autism spectrum disorder (ASD)[J]. Cells, 2019, 8 (4): 367.
doi: 10.3390/cells8040367 |
55 |
Pomatto LCD , Davies KJA . Adaptive homeostasis and the free radical theory of ageing[J]. Free Radical Bio Med, 2018, 124: 420- 430.
doi: 10.1016/j.freeradbiomed |
56 |
Cardoso S , Correia S , Carvalho C , et al. Perspectives on mitochondrial uncoupling proteins-mediated neuroprotection[J]. J Bioenerg Biomembr, 2015, 47 (1-2): 119- 131.
doi: 10.1007/s10863-014-9580-x |
57 |
Haas RH . Mitochondrial dysfunction in aging and diseases of aging[J]. Biology (Basel), 2019, 8 (2): 48.
doi: 10.3390/biology8020048 |
58 |
Kandlur A , Satyamoorthy K , Gangadharan G . Oxidative stress in cognitive and epigenetic aging: a retrospective glance[J]. Front Mol Neurosci, 2020, 13: 41.
doi: 10.3389/fnmol.2020.00041 |
59 |
Grimm A , Eckert A . Brain aging and neurodegeneration: from a mitochondrial point of view[J]. J Neurochem, 2017, 143 (4): 418- 431.
doi: 10.1111/jnc.14037 |
60 |
Yao SQ , Liew SS , Qin X , et al. Smart design of nanomaterials for mitochondria-targeted nanotherapeutics[J]. Angew Chem Int Ed Engl, 2020.
doi: 10.1002/anie.201915826 |
61 |
Yasuzaki Y , Yamada Y , Ishikawa T , et al. Validation of mitochondrial gene delivery in liver and skeletal muscle via hydrodynamic injection using an artificial mitochondrial reporter dna vector[J]. Mol Pharmaceut, 2015, 12 (12): 4311- 4320.
doi: 10.1021/acs.molpharmaceut.5b00511 |
62 |
Cardoso AM , Morais CM , Cruz AR , et al. Gemini surfactants mediate efficient mitochondrial gene delivery and expression[J]. Mol Pharmaceut, 2015, 12 (3): 716- 730.
doi: 10.1021/mp5005349 |
63 |
Yamada Y , Fukuda Y , Harashima H . An analysis of membrane fusion between mitochondrial double membranes and MITO-Porter, mitochondrial fusogenic vesicles[J]. Mitochondrion, 2015, 24: 50- 55.
doi: 10.1016/j.mito.2015.07.003 |
64 |
Yamada Y , Ishikawa T , Harashima H . Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression[J]. Biomaterials, 2017, 136: 56- 66.
doi: 10.1016/j.biomaterials |
65 |
Chuah JA , Matsugami A , Hayashi F , et al. Self-assembled peptide-based system for mitochondrial-targeted gene delivery: functional and structural insights[J]. Biomacromolecules, 2016, 17 (11): 3547- 3557.
doi: 10.1021/acs.biomac.6b01056 |
66 |
Gammage PA , Viscomi C , Simard ML , et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo[J]. Nat Med, 2018, 24 (11): 1691- 1695.
doi: 10.1038/s41591-018-0165-9 |
67 |
Bacman SR , Kauppila JHK , Pereira CV , et al. MitoTALEN reduces mutant mtDNA load and restores tRNA(Ala) levels in a mouse model of heteroplasmic mtDNA mutation[J]. Nat Med, 2018, 24 (11): 1696- 1700.
doi: 10.1038/s41591-018-0166-8 |
68 |
Jang YH , Lim KI . Recent advances in mitochondria-targeted gene delivery[J]. Molecules (Basel, Switzerland), 2018, 23 (9): 2316.
doi: 10.3390/molecules23092316 |
[1] | CHEN Anjing, ZHANG Xun. The new strategies of targeting SUMOylation in the treatment of glioma [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 88-94. |
|