Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (8): 34-41.doi: 10.6040/j.issn.1671-7554.0.2020.0725

• Special Topic on Brain Science and Brain Like Intelligence • Previous Articles     Next Articles

Mitochondrial dysfunction and related brain diseases

Chuanzhu YAN*(),Wei WANG,Kunqian JI,Yuying ZHAO   

  1. Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
  • Received:2020-05-01 Online:2020-08-07 Published:2020-08-07
  • Contact: Chuanzhu YAN E-mail:chuanzhuyan@163.com

Abstract:

Mitochondria provides most of the energy for the body through oxidative phosphorylation (OXPHOS) and participates in various physiological and biochemical processes such as cell signal transduction, inflammatory response and apoptosis. Brain is very sensitive to energy change. Mitochondrial dysfunction is associated with various disorders including genetic and metabolic diseases, neurodegenerative diseases, psychological diseases and brain aging via multiple pathways. At present, there is no specific treatment plan for mitochondrial encephalopathy. Research on mitochondrial gene targeted therapy is expected to break through the treatment bottleneck of mitochondrial diseases and brings hope to patients

Key words: Mitochondrial encephalopathy, Neurodegeneration, Psychological diseases, Brain aging, Targeted therapy

CLC Number: 

  • R742
1 Wiemerslage L , Lee D . Quantification of mitochondrial morphology in neurites of dopaminergic neurons using multiple parameters[J]. J Neurosci Methods, 2016, 262: 56- 65.
doi: 10.1016/j.jneumeth
2 Ernster L , Schatz G . Mitochondria: a historical review[J]. The Journal of Cell Biology, 1981, 91 (3 Pt 2): 227- 255.
3 Luft R , Ikkos D , Palmieri G , et al. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study[J]. J Clin Invest, 1962, 41: 1776- 804.
doi: 10.1172/JCI104637
4 Anderson S , Bankier AT , Barrell BG , et al. Sequence and organization of the human mitochondrial genome[J]. Nature, 1981, 290 (5806): 457- 465.
doi: 10.1038/290457a0
5 Holt IJ , Harding AE , Cooper JM , et al. Mitochondrial myopathies: clinical and biochemical features of 30 patients with major deletions of muscle mitochondrial DNA[J]. Ann Neurol, 1989, 26 (6): 699- 708.
doi: 10.1002/ana.410260603
6 Holt IJ , Harding AE , Morgan-Hughes JA . Deletions of muscle mitochondrial DNA in mitochondrial myopathies: sequence analysis and possible mechanisms[J]. Nucleic Acids Res, 1989, 17 (12): 4465- 4469.
doi: 10.1093/nar/17.12.4465
7 Bris C , Goudenege D , Desquiret-Dumas V , et al. Bioinformatics tools and databases to assess the pathogenicity of mitochondrial DNA variants in the field of next generation sequencing[J]. Front Genet, 2018, 9: 632.
doi: 10.3389/fgene.2018.00632
8 Luft R . The development of mitochondrial medicine[J]. P Natl Acad Sci Usa, 1994, 91 (19): 8731- 8738.
doi: 10.1073/pnas.91.19.8731
9 El-Hattab AW , Adesina AM , Jones J , et al. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options[J]. Mol Genet Metab, 2015, 116 (1-2): 4- 12.
doi: 10.1016/j.ymgme
10 Whitehead MT , Wien M , Lee B , et al. Black Toenail Sign in MELAS Syndrome[J]. Pediatr Neurol, 2017, 75: 61- 65.
doi: 10.1016/j.pediatrneurol.2017.06.017
11 El-Hattab AW , Emrick LT , Hsu JW , et al. Impaired nitric oxide production in children with MELAS syndrome and the effect of arginine and citrulline supplementation[J]. Mol Genet Metab, 2016, 117 (4): 407- 412.
doi: 10.1016/j.ymgme.2016.01.010
12 Goto Y , Nonaka I , Horai S . A mutation in the tRNA (Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies[J]. Nature, 1990, 348 (6302): 651- 653.
doi: 10.1038/348651a0
13 Rodriguez MC , MacDonald JR , Mahoney DJ , et al. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders[J]. Muscle Nerve, 2007, 35 (2): 235- 242.
14 Gerards M , Sallevelt SCEH , Smeets HJM . Leigh syndrome: Resolving the clinical and genetic heterogeneity paves the way for treatment options[J]. Mol Genet Metab, 2016, 117 (3): 300- 312.
doi: 10.1016/j.ymgme.2015.12.004
15 Bonfante E , Koenig MK , Adejumo RB , et al. The neuroimaging of Leigh syndrome: case series and review of the literature[J]. Pediatr Radiol, 2016, 46 (4): 443- 451.
doi: 10.1007/s00247-015-3523-5
16 Schubert Baldo M , Vilarinho L . Molecular basis of Leigh syndrome: a current look[J]. Orphanet J Rare Dis, 2020, 15 (1): 31.
doi: 10.1186/s13023-020-1297-9
17 Sofou K , De Coo IF , Isohanni P , et al. A multicenter study on Leigh syndrome: disease course and predictors of survival[J]. Orphanet J Rare Dis, 2014, 9: 52.
doi: 10.1186/1750-1172-9-52
18 Remes AM , Karppa M , Moilanen JS , et al. Epidemiology of the mitochondrial DNA 8344A>G mutation for the myoclonus epilepsy and ragged red fibres (MERRF) syndrome[J]. J Neurol Neurosur Ps, 2003, 74 (8): 1158- 1159.
doi: 10.1136/jnnp.74.8.1158
19 Finsterer J , Zarrouk-Mahjoub S , Shoffner JM . MERRF classification: Implications for diagnosis and clinical trials[J]. Pediatr Neurol, 2018, 80: 8- 23.
doi: 10.1016/j.pediatrneurol.2017.12.005
20 Juaristi L , Irigoyen C , Quiroga J . Neuropathy, ataxia, and retinitis pigmentosa syndrome: a multidisciplinary diagnosis[J]. Retin Cases Brief Rep, 2018.
doi: 10.1097/ICB.0000000000000835
21 Tatuch Y , Robinson BH . The mitochondrial DNA mutation at 8993 associated with NARP slows the rate of ATP synthesis in isolated lymphoblast mitochondria[J]. Biochem Bioph Res Co, 1993, 192 (1): 124- 128.
doi: 10.1006/bbrc.1993.1390
22 Claeys KG , Abicht A , Hausler M , et al. Novel genetic and neuropathological insights in neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP)[J]. Muscle Nerve, 2016, 54 (2): 328- 333.
doi: 10.1002/mus.25125
23 Rahman S , Copeland WC . POLG-related disorders and their neurological manifestations[J]. Nat Rev Neurol, 2019, 15 (1): 40- 52.
24 Rose HR , Al Khalili Y . Alpers-Huttenlochen Syndrome (AHS, Alper Disease), In: StatPearls[M]. Treasure Island (FL): StatPearls Publishing, 2020.
25 Lane CA , Hardy J , Schott JM . Alzheimer's disease[J]. Eur J Neurol, 2018, 25 (1): 59- 70.
doi: 10.1111/ene.13439
26 Swerdlow RH . Mitochondria and mitochondrial cascades in Alzheimer's disease[J]. J Alzheimers Dis, 2018, 62 (3): 1403- 1416.
doi: 10.3233/JAD-170585
27 Terada T , Obi T , Bunai T , et al. In vivo mitochondrial and glycolytic impairments in patients with Alzheimer disease[J]. Neurology, 2020, 94 (15): 1592- 1604.
doi: 10.1212/WNL.0000000000009249
28 Agnihotri A , Aruoma OI . Alzheimer's disease and parkinson's disease: a nutritional toxicology perspective of the impact of oxidative stress, mitochondrial dysfunction, nutrigenomics and environmental chemicals[J]. J Am Coll Nutr, 2020, 39 (1): 16- 27.
doi: 10.1080/07315724.2019.1683379
29 Luque-Contreras D , Carvajal K , Toral-Rios D , et al. Oxidative stress and metabolic syndrome: cause or consequence of Alzheimer's disease?[J]. Oxid Med Cell Longev, 2014, 2014: 497802.
doi: 10.1155/2014/497802
30 Vila M , Przedborski S . Genetic clues to the pathogenesis of Parkinson's disease[J]. Nat Med, 2004, 10 (Suppl): 58- 62.
31 Pickrell AM , Youle RJ . The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease[J]. Neuron, 2015, 85 (2): 257- 273.
doi: 10.1016/j.neuron.2014.12.007
32 Krebiehl G , Ruckerbauer S , Burbulla LF , et al. Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1[J]. PLoS One, 2010, 5 (2): e9367.
doi: 10.1371/journal.pone.0009367
33 Repici M , Giorgini F . DJ-1 in Parkinson's disease: clinical insights and therapeutic perspectives[J]. J Clin Med, 2019, 8 (9): 1377.
doi: 10.3390/jcm8091377
34 Das NR , Sharma SS . Cognitive impairment associated with Parkinson's disease: role of mitochondria[J]. Curr Neuropharmacol, 2016, 14 (6): 584- 592.
doi: 10.2174/1570159X14666160104142349
35 Bates GP , Dorsey R , Gusella JF , et al. Huntington disease[J]. Nat Rev Dis Primers, 2015, 1: 15005.
doi: 10.1038/nrdp
36 Panov AV , Gutekunst CA , Leavitt BR , et al. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines[J]. Nat Neurosci, 2002, 5 (8): 731- 736.
doi: 10.1038/nn884
37 Di Cristo F , Finicelli M , Digilio FA , et al. Meldonium improves Huntington's disease mitochondrial dysfunction by restoring peroxisome proliferator-activated receptor gamma coactivator 1alpha expression[J]. J Cell Physiol, 2019, 234 (6): 9233- 9246.
doi: 10.1002/jcp.27602
38 Franco-Iborra S , Vila M , Perier C . Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson's disease and Huntington's disease[J]. Front Neurosci, 2018, 12: 342.
doi: 10.3389/fnins.2018.00342
39 Orr AL , Li S , Wang CE , et al. N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking[J]. J Neurosci, 2008, 28 (11): 2783- 2792.
doi: 10.1523/JNEUROSCI.0106-08.2008
40 McColgan P , Tabrizi SJ . Huntington's disease: a clinical review[J]. Eur J Neurol, 2018, 25 (1): 24- 34.
doi: 10.1111/ene.13413
41 Holper L , Lan MJ , Brown PJ , et al. Brain cytochrome-c-oxidase as a marker of mitochondrial function: A pilot study in major depression using NIRS[J]. Depress Anxiety, 2019, 36 (8): 766- 779.
doi: 10.1002/da.22913
42 Kuffner K , Triebelhorn J , Meindl K , et al. Major Depressive Disorder is Associated with Impaired Mitochondrial Function in Skin Fibroblasts[J]. Cells, 2020, 9 (4): 884.
doi: 10.3390/cells9040884
43 Holper L , Ben-Shachar D , Mann JJ . Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease[J]. Neuropsychopharmacol, 2019, 44 (5): 837- 849.
doi: 10.1038/s41386-018-0090-0
44 Brown PJ , Brennan N , Ciarleglio A , et al. Declining skeletal muscle mitochondrial function associated with increased risk of depression in later life[J]. Am J Geriat Psychiat, 2019, 27 (9): 963- 971.
doi: 10.1016/j.jagp.2019.03.022
45 De Crescenzo F , Ciliberto M , Menghini D , et al. Is (18)F-FDG-PET suitable to predict clinical response to the treatment of geriatric depression? A systematic review of PET studies[J]. Aging Ment Health, 2017, 21 (9): 889- 894.
doi: 10.1080/13607863.2016.1247413
46 Stein DJ , Scott KM , de Jonge P , et al. Epidemiology of anxiety disorders: from surveys to nosology and back[J]. Dialogues Clin Neurosci, 2017, 19 (2): 127- 136.
47 Filiou MD , Sandi C . Anxiety and brain mitochondria: a bidirectional crosstalk[J]. Trends Neurosci, 2019, 42 (9): 573- 588.
doi: 10.1016/j.tins.2019.07.002
48 Misiewicz Z , Iurato S , Kulesskaya N , et al. Multi-omics analysis identifies mitochondrial pathways associated with anxiety-related behavior[J]. PLoS Genet, 2019, 15 (9): e1008358.
doi: 10.1371/journal.pgen.1008358
49 Papilloud A , Guillot de Suduiraut I , Zanoletti O , et al. Peripubertal stress increases play fighting at adolescence and modulates nucleus accumbens CB1 receptor expression and mitochondrial function in the amygdala[J]. Transl Psychiat, 2018, 8 (1): 156.
doi: 10.1038/s41398-018-0215-6
50 van der Kooij MA , Hollis F , Lozano L , et al. Diazepam actions in the VTA enhance social dominance and mitochondrial function in the nucleus accumbens by activation of dopamine D1 receptors[J]. Mol Psychiatr, 2018, 23 (3): 569- 578.
doi: 10.1038/mp.2017.135
51 Manivasagam T , Arunadevi S , Essa MM , et al. Role of oxidative stress and antioxidants in autism[J]. Adv Neurobiol, 2020, 24: 193- 206.
doi: 10.1007/978-3-030-30402-7_7
52 La Barbera L , Vedele F , Nobili A , et al. Neurodevelopmental disorders: functional role of ambra1 in autism and schizophrenia[J]. Mol Neurobiol, 2019, 56 (10): 6716- 6724.
doi: 10.1007/s12035-019-1557-7
53 Schwede M , Nagpal S , Gandal MJ , et al. Strong correlation of downregulated genes related to synaptic transmission and mitochondria in post-mortem autism cerebral cortex[J]. J Neurodev Disord, 2018, 10 (1): 18.
doi: 10.1186/s11689-018-9237-x
54 Carrasco M , Salazar C , Tiznado W , et al. Alterations of mitochondrial biology in the oral mucosa of Chilean children with autism spectrum disorder (ASD)[J]. Cells, 2019, 8 (4): 367.
doi: 10.3390/cells8040367
55 Pomatto LCD , Davies KJA . Adaptive homeostasis and the free radical theory of ageing[J]. Free Radical Bio Med, 2018, 124: 420- 430.
doi: 10.1016/j.freeradbiomed
56 Cardoso S , Correia S , Carvalho C , et al. Perspectives on mitochondrial uncoupling proteins-mediated neuroprotection[J]. J Bioenerg Biomembr, 2015, 47 (1-2): 119- 131.
doi: 10.1007/s10863-014-9580-x
57 Haas RH . Mitochondrial dysfunction in aging and diseases of aging[J]. Biology (Basel), 2019, 8 (2): 48.
doi: 10.3390/biology8020048
58 Kandlur A , Satyamoorthy K , Gangadharan G . Oxidative stress in cognitive and epigenetic aging: a retrospective glance[J]. Front Mol Neurosci, 2020, 13: 41.
doi: 10.3389/fnmol.2020.00041
59 Grimm A , Eckert A . Brain aging and neurodegeneration: from a mitochondrial point of view[J]. J Neurochem, 2017, 143 (4): 418- 431.
doi: 10.1111/jnc.14037
60 Yao SQ , Liew SS , Qin X , et al. Smart design of nanomaterials for mitochondria-targeted nanotherapeutics[J]. Angew Chem Int Ed Engl, 2020.
doi: 10.1002/anie.201915826
61 Yasuzaki Y , Yamada Y , Ishikawa T , et al. Validation of mitochondrial gene delivery in liver and skeletal muscle via hydrodynamic injection using an artificial mitochondrial reporter dna vector[J]. Mol Pharmaceut, 2015, 12 (12): 4311- 4320.
doi: 10.1021/acs.molpharmaceut.5b00511
62 Cardoso AM , Morais CM , Cruz AR , et al. Gemini surfactants mediate efficient mitochondrial gene delivery and expression[J]. Mol Pharmaceut, 2015, 12 (3): 716- 730.
doi: 10.1021/mp5005349
63 Yamada Y , Fukuda Y , Harashima H . An analysis of membrane fusion between mitochondrial double membranes and MITO-Porter, mitochondrial fusogenic vesicles[J]. Mitochondrion, 2015, 24: 50- 55.
doi: 10.1016/j.mito.2015.07.003
64 Yamada Y , Ishikawa T , Harashima H . Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression[J]. Biomaterials, 2017, 136: 56- 66.
doi: 10.1016/j.biomaterials
65 Chuah JA , Matsugami A , Hayashi F , et al. Self-assembled peptide-based system for mitochondrial-targeted gene delivery: functional and structural insights[J]. Biomacromolecules, 2016, 17 (11): 3547- 3557.
doi: 10.1021/acs.biomac.6b01056
66 Gammage PA , Viscomi C , Simard ML , et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo[J]. Nat Med, 2018, 24 (11): 1691- 1695.
doi: 10.1038/s41591-018-0165-9
67 Bacman SR , Kauppila JHK , Pereira CV , et al. MitoTALEN reduces mutant mtDNA load and restores tRNA(Ala) levels in a mouse model of heteroplasmic mtDNA mutation[J]. Nat Med, 2018, 24 (11): 1696- 1700.
doi: 10.1038/s41591-018-0166-8
68 Jang YH , Lim KI . Recent advances in mitochondria-targeted gene delivery[J]. Molecules (Basel, Switzerland), 2018, 23 (9): 2316.
doi: 10.3390/molecules23092316
[1] CHEN Anjing, ZHANG Xun. The new strategies of targeting SUMOylation in the treatment of glioma [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 1 -6 .
[2] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 7 -14 .
[3] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 15 -23 .
[4] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 24 -31 .
[5] MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui. Effect of miR-27b-3p regulating SMAD1 on osteosarcoma cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 32 -37 .
[6] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 38 -46 .
[7] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 47 -52 .
[8] XIAO Juan, XIAO Qiang, CONG Wei, LI Ting, DING Shouluan, ZHANG Yuan, SHAO Chunchun, WU Mei, LIU Jianing, JIA Hongying. Comparison of diagnostic efficacy of two kinds of thyroid imagine reporting and data systems[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 53 -59 .
[9] DING Xiangyun, YU Qingmei, ZHANG Wenfang, ZHUANG Yuan, HAO Jing. Correlation of the expression of insulin-like growth factor II in granulosa cells and ovulation induction outcomes of 84 patients with polycystic ovary syndrome[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 60 -66 .
[10] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 67 -71 .