Journal of Shandong University (Health Sciences) ›› 2020, Vol. 58 ›› Issue (8): 67-73.doi: 10.6040/j.issn.1671-7554.0.2020.430

• Special Topic on Brain Science and Brain Like Intelligence • Previous Articles     Next Articles

Research advances in the formation of glioma immunosuppressive microenvironment

Gang LI*(),Hao XUE,Wei QIU,Rongrong ZHAO   

  1. Department of Neurosurgery, Qilu Hospital, Cheeloo College of Meicine, Shandong University, Jinan 250012, Shandong, China
  • Received:2020-03-24 Online:2020-08-01 Published:2020-08-07
  • Contact: Gang LI E-mail:dr.ligang@sdu.edu.cn

Abstract:

As the most common and lethal primary tumor of the central nervous system, glioma responds poorly to conventional treatments. Although novel immunotherapies have been adopted, the prognosis of glioma patients is still poor due to the immunosuppressive microenvironment. Therefore, a thorough investigation of the formation mechanism of glioma immunosuppressive microenvironment has become the focus. Based on the latest research progress, we summarized and prospected the future research direction of glioma immunosuppressive microenvironment, hoping to provide reference for the better understanding of this disease.

Key words: Glioma, Immunosuppressive microenvironment, Immunotherapy

CLC Number: 

  • R739.41
1 Savage N . Searching for the roots of brain cancer[J]. Nature, 2018, 561 (7724): S50- S51.
doi: 10.1038/d41586-018-06709-2
2 June CH , O'Connor RS , Kawalekar OU , et al. CAR T cell immunotherapy for human cancer[J]. Science, 2018, 359 (6382): 1361- 1365.
doi: 10.1126/science.aar6711
3 Voorwerk L , Slagter M , Horlings HM , et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial[J]. Nat Med, 2019, 25 (6): 920- 928.
doi: 10.1038/s41591-019-0432-4
4 Garner H , de Visser KE . Immune crosstalk in cancer progression and metastatic spread: a complex conversation[J]. Nat Rev Immunol, 2020, 20 (8): 483- 497.
doi: 10.1038/s41577-019-0271-z
5 Galon J , Bruni D . Tumor immunology and tumor evolution: intertwined histories[J]. Immunity, 2020, 52 (1): 55- 81.
doi: 10.1016/j.immuni.2019.12.018
6 Quail DF , Joyce JA . The microenvironmental landscape of brain tumors[J]. Cancer Cell, 2017, 31 (3): 326- 341.
doi: 10.1016/j.ccell.2017.02.009
7 Xie F , Zhou X , Fang M , et al. Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy[J]. Adv Sci (Weinh), 2019, 6 (24): 1901779.
doi: 10.1002/advs.201901779
8 Cheng J , Meng J , Zhu L , et al. Exosomal noncoding RNAs in Glioma: biological functions and potential clinical applications[J]. Mol Cancer, 2020, 19 (1): 66.
doi: 10.1186/s12943-020-01189-3
9 Qian M , Wang S , Guo X , et al. Hypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-kappaB pathways[J]. Oncogene, 2020, 39 (2): 428- 442.
doi: 10.1038/s41388-019-0996-y
10 Guo X , Qiu W , Liu Q , et al. Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways[J]. Oncogene, 2018, 37 (31): 4239- 4259.
doi: 10.1038/s41388-018-0261-9
11 Guo X , Qiu W , Wang J , et al. Glioma exosomes mediate the expansion and function of myeloid-derived suppressor cells through microRNA-29a/Hbp1 and microRNA-92a/Prkar1a pathways[J]. Int J Cancer, 2019, 144 (12): 3111- 3126.
doi: 10.1002/ijc.32052
12 Arvanitis CD , Ferraro GB , Jain RK . The blood-brain barrier and blood-tumour barrier in brain tumours and metastases[J]. Nat Rev Cancer, 2020, 20 (1): 26- 41.
doi: 10.1038/s41568-019-0205-x
13 Prinz M , Priller J , Sisodia SS , et al. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration[J]. Nat Neurosci, 2011, 14 (10): 1227- 1235.
doi: 10.1038/nn.2923
14 Kettenmann H , Hanisch UK , Noda M , et al. Physiology of microglia[J]. Physiol Rev, 2011, 91 (2): 461- 553.
15 Gutmann DH , Kettenmann H . Microglia/brain macrophages as central drivers of brain tumor pathobiology[J]. Neuron, 2019, 104 (3): 442- 449.
doi: 10.1016/j.neuron.2019.08.028
16 Norris GT , Kipnis J . Immune cells and CNS physiology: microglia and beyond[J]. J Exp Med, 2019, 216 (1): 60- 70.
doi: 10.1084/jem.20180199
17 Poon CC , Sarkar S , Yong VW , et al. Glioblastoma-associated microglia and macrophages: targets for therapies to improve prognosis[J]. Brain, 2017, 140 (6): 1548- 1560.
doi: 10.1093/brain/aww355
18 Wei J , Chen P , Gupta P , et al. Immune biology of glioma-associated macrophages and microglia: functional and therapeutic implications[J]. Neuro Oncol, 2020, 22 (2): 180- 194.
19 Wright-Jin EC , Gutmann DH . Microglia as dynamic cellular mediators of brain function[J]. Trends Mol Med, 2019, 25 (11): 967- 979.
doi: 10.1016/j.molmed.2019.08.013
20 Chen P , Hsu WH , Chang A , et al. Circadian regulator CLOCK recruits immune-suppressive microglia into the GBM tumor microenvironment[J]. Cancer Discov, 2020, 10 (3): 371- 381.
doi: 10.1158/2159-8290.CD-19-0400
21 Abels ER , Maas SLN , Nieland L , et al. Glioblastoma-associated microglia reprogramming is mediated by functional transfer of extracellular miR-21[J]. Cell Rep, 2019, 28 (12): 3105- 3119.
doi: 10.1016/j.celrep.2019.08.036
22 Yu-Ju Wu C , Chen CH , Lin CY , et al. CCL5 of glioma-associated microglia/macrophages regulates glioma migration and invasion via calcium-dependent matrix metalloproteinase 2[J]. Neuro Oncol, 2020, 22 (2): 253- 266.
doi: 10.1093/neuonc/noz189
23 Qian J , Luo F , Yang J , et al. TLR2 promotes glioma immune evasion by downregulating MHC class II molecules in microglia[J]. Cancer Immunol Res, 2018, 6 (10): 1220- 1233.
24 Guo X , Xue H , Shao Q , et al. Hypoxia promotes glioma-associated macrophage infiltration via periostin and subsequent M2 polarization by upregulating TGF-beta and M-CSFR[J]. Oncotarget, 2016, 7 (49): 80521- 80542.
doi: 10.18632/oncotarget.11825
25 Zong CC . Single-cell RNA-seq study determines the ontogeny of macrophages in glioblastomas[J]. Genome Biol, 2017, 18 (1): 235.
doi: 10.1186/s13059-017-1375-z
26 Yan D , Kowal J , Akkari L , et al. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas[J]. Oncogene, 2017, 36 (43): 6049- 6058.
doi: 10.1038/onc.2017.261
27 Sylvestre M , Crane CA , Pun SH . Progress on modulating tumor-associated macrophages with biomaterials[J]. Adv Mater, 2020, 32 (13): e1902007.
doi: 10.1002/adma.201902007
28 Vetsika EK , Koukos A , Kotsakis A . Myeloid-derived suppressor cells: major figures that shape the immunosuppressive and angiogenic network in cancer[J]. Cells, 2019, 8 (12): 1647.
doi: 10.3390/cells8121647
29 Kumar V , Patel S , Tcyganov E , et al. The nature of myeloid-derived suppressor cells in the tumor microenvironment[J]. Trends Immunol, 2016, 37 (3): 208- 220.
doi: 10.1016/j.it.2016.01.004
30 Waziri A . Glioblastoma-derived mechanisms of systemic immunosuppression[J]. Neurosurg Clin N Am, 2010, 21 (1): 31- 42.
doi: 10.1016/j.nec.2009.08.005
31 Chae M , Peterson TE , Balgeman A , et al. Increasing glioma-associated monocytes leads to increased intratumoral and systemic myeloid-derived suppressor cells in a murine model[J]. Neuro Oncol, 2015, 17 (7): 978- 991.
doi: 10.1093/neuonc/nou343
32 Chang AL , Miska J , Wainwright DA , et al. CCL2 Produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells[J]. Cancer Res, 2016, 76 (19): 5671- 5682.
doi: 10.1158/0008-5472.CAN-16-0144
33 Flores-Toro JA , Luo D , Gopinath A , et al. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas[J]. Proc Natl Acad Sci U S A, 2020, 117 (2): 1129- 1138.
doi: 10.1073/pnas.1910856117
34 Le Gall CM , Weiden J , Eggermont LJ , et al. Dendritic cells in cancer immunotherapy[J]. Nat Mater, 2018, 17 (6): 474- 475.
doi: 10.1038/s41563-018-0093-6
35 Yan J , Zhao Q , Gabrusiewicz K , et al. FGL2 promotes tumor progression in the CNS by suppressing CD103(+) dendritic cell differentiation[J]. Nat Commun, 2019, 10 (1): 448.
doi: 10.1038/s41467-018-08271-x
36 刘鸿宇, 沈少平, 杨霖, 等. 树突状细胞疫苗在恶性胶质瘤免疫治疗中的应用[J]. 中国现代神经疾病杂志, 2020, 20 (2): 119- 126.
LIU Hongyu , SHEN Shaoping , YANG Lin , et al. The application of dendritic cells vaccination in malignant glioma[J]. Chinese Journal of Contemporary Neurology and Neurosurgery, 2020, 20 (2): 119- 126.
37 Nicolas-Avila JA , Adrover JM , Hidalgo A . Neutrophils in homeostasis, immunity, and cancer[J]. Immunity, 2017, 46 (1): 15- 28.
doi: 10.1016/j.immuni.2016.12.012
38 Bertaut A , Truntzer C , Madkouri R , et al. Blood baseline neutrophil count predicts bevacizumab efficacy in glioblastoma[J]. Oncotarget, 2016, 7 (43): 70948- 70958.
doi: 10.18632/oncotarget.10898
39 Liang J , Piao Y , Holmes L , et al. Neutrophils promote the malignant glioma phenotype through S100A4[J]. Clin Cancer Res, 2014, 20 (1): 187- 198.
doi: 10.1158/1078-0432.CCR-13-1279
40 Khan S , Mittal S , McGee K , et al. Role of neutrophils and myeloid-derived suppressor cells in glioma progression and treatment resistance[J]. Int J Mol Sci, 2020, 21 (6): 1954.
doi: 10.3390/ijms21061954
41 Shaul ME , Fridlender ZG . Cancer-related circulating and tumor-associated neutrophils-subtypes, sources and function[J]. FEBS J, 2018, 285 (23): 4316- 4342.
doi: 10.1111/febs.14524
42 van der Leun AM , Thommen DS , Schumacher TN . CD8(+) T cell states in human cancer: insights from single-cell analysis[J]. Nat Rev Cancer, 2020, 20 (4): 218- 232.
doi: 10.1038/s41568-019-0235-4
43 Sharonov GV , Serebrovskaya EO , Yuzhakova DV , et al. B cells, plasma cells and antibody repertoires in the tumour microenvironment[J]. Nat Rev Immunol, 2020, 20 (5): 294- 307.
doi: 10.1038/s41577-019-0257-x
44 Miska J , Lee-Chang C , Rashidi A , et al. HIF-1alpha is ametabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of tregs in glioblastoma[J]. Cell Rep, 2019, 27 (1): 226- 237.
45 Togashi Y , Shitara K , Nishikawa H . Regulatory T cells in cancer immunosuppression-implications for anticancer therapy[J]. Nat Rev Clin Oncol, 2019, 16 (6): 356- 371.
doi: 10.1038/s41571-019-0175-7
46 Nehama D , Di Ianni N , Musio S , et al. B7-H3-redirected chimeric antigen receptor T cells target glioblastoma and neurospheres[J]. EBioMedicine, 2019, 47: 33- 43.
doi: 10.1016/j.ebiom.2019.08.030
47 Choi BD , Yu X , Castano AP , et al. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma[J]. J Immunother Cancer, 2019, 7 (1): 304.
48 Figueroa J , Phillips LM , Shahar T , et al. Exosomes from glioma-associated mesenchymal stem cells increase the tumorigenicity of glioma stem-like cells via transfer of miR-1587[J]. Cancer Res, 2017, 77 (21): 5808- 5819.
doi: 10.1158/0008-5472.CAN-16-2524
49 Shahar T , Rozovski U , Hess KR , et al. Percentage of mesenchymal stem cells in high-grade glioma tumor samples correlates with patient survival[J]. Neuro Oncol, 2017, 19 (5): 660- 668.
50 Tumangelova-Yuzeir K , Naydenov E , Ivanova-Todorova E , et al. Mesenchymal stem cells derived and cultured from glioblastoma multiforme increase tregs, downregulate Th17, and induce the tolerogenic phenotype of monocyte-derived cells[J]. Stem Cells Int, 2019, 2019: 6904638.
doi: 10.1155/2019/6904638.eCollection2019
51 Cloughesy TF , Mochizuki AY , Orpilla JR , et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma[J]. Nat Med, 2019, 25 (3): 477- 486.
doi: 10.1038/s41591-018-0337-7
52 Schalper KA , Rodriguez-Ruiz ME , Diez-Valle R , et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma[J]. Nat Med, 2019, 25 (3): 470- 476.
doi: 10.1038/s41591-018-0339-5
53 Zhao J , Chen AX , Gartrell RD , et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma[J]. Nat Med, 2019, 25 (3): 462- 469.
doi: 10.1038/s41591-019-0349-y
[1] Tao JIANG. The application of brain-like intelligence in the frontiers of brain science [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 10-13.
[2] WU Qiang, HE Zekun, LIU Ju, CUI Xiaomeng, SUN Shuang, SHI Wei. A research on multi-modal MRI analysis based on machine learning for brain glioma [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 81-87.
[3] CHEN Anjing, ZHANG Xun. The new strategies of targeting SUMOylation in the treatment of glioma [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 88-94.
[4] XU Jixi, CHEN Weijian. Diffuse midline glioma with H3 K27M mutation in the spinal cord: a case report [J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 96-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 1 -6 .
[2] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 7 -14 .
[3] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 15 -23 .
[4] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 24 -31 .
[5] MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui. Effect of miR-27b-3p regulating SMAD1 on osteosarcoma cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 32 -37 .
[6] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 38 -46 .
[7] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 47 -52 .
[8] XIAO Juan, XIAO Qiang, CONG Wei, LI Ting, DING Shouluan, ZHANG Yuan, SHAO Chunchun, WU Mei, LIU Jianing, JIA Hongying. Comparison of diagnostic efficacy of two kinds of thyroid imagine reporting and data systems[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 53 -59 .
[9] DING Xiangyun, YU Qingmei, ZHANG Wenfang, ZHUANG Yuan, HAO Jing. Correlation of the expression of insulin-like growth factor II in granulosa cells and ovulation induction outcomes of 84 patients with polycystic ovary syndrome[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 60 -66 .
[10] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 58(7): 67 -71 .