Journal of Shandong University (Health Sciences) ›› 2024, Vol. 62 ›› Issue (7): 10-20.doi: 10.6040/j.issn.1671-7554.0.2024.0004
• 呼吸系统疾病精准诊疗专题 • Previous Articles Next Articles
SUN Lina, BAI Hongyan, NIU Zongge, ZHANG Fushuai, QU Yiqing
CLC Number:
[1] Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment[J]. JAMA, 2018, 319(7): 698-710. [2] Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315(8): 788-800. [3] Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome[J]. Lancet, 2021, 398(10300): 622-637. [4] Mokra D, Kosutova P. Biomarkers in acute lung injury[J]. Respir Physiol Neurobiol, 2015, 209: 52-58. doi:10.1016/j.resp.2014.10.006. [5] Terpstra ML, Aman J, van Nieuw Amerongen GP, et al. Plasma biomarkers for acute respiratory distress syndrome: a systematic review and meta-analysis[J]. Crit Care Med, 2014, 42(3): 691-700. [6] Sipahioglu H, Onuk S. Lactate dehydrogenase/albumin ratio as a prognostic factor in severe acute respiratory distress syndrome cases associated with COVID-19[J]. Medicine(Baltimore), 2022, 101(38): e30759. doi:10.1097/md.0000000000030759. [7] Yang LJ, Gao C, Li FY, et al. Monocyte-to-lymphocyte ratio is associated with 28-day mortality in patients with acute respiratory distress syndrome: a retrospective study[J]. J Intensive Care, 2021, 9(1): 49. doi:10.1186/s40560-021-00564-6. [8] 吴薇, 肖影, 王健, 等. CRP/Alb、NLR、PLR联合检测对重症急性胰腺炎合并ARDS的预测价值[J]. 疑难病杂志, 2023, 22(9): 951-955. WU Wei, XIAO Ying, WANG Jian, et al. The predictive value of combined detection of CRP/Alb, NLR, and PLR in severe acute pancreatitis with ARDS[J]. Chinese Journal of Difficult and Complicated Cases, 2023, 22(9): 951-955. [9] Yu XS, Chen ZQ, Hu YF, et al. Red blood cell distribution width is associated with mortality risk in patients with acute respiratory distress syndrome based on the Berlin definition: a propensity score matched cohort study[J]. Heart Lung, 2020, 49(5): 641-645. [10] Chen JH, Zhai ET, Yuan YJ, et al. Systemic immune-inflammation index for predicting prognosis of colorectal cancer[J]. World J Gastroenterol, 2017, 23(34): 6261-6272. [11] Jomrich G, Paireder M, Kristo I, et al. High systemic immune-inflammation index is an adverse prognostic factor for patients with gastroesophageal adenocarcinoma[J]. Ann Surg, 2021, 273(3): 532-541. [12] Orhan AL, ?瘙塁aylık F, Çiçek V, et al. Evaluating the systemic immune-inflammation index for in-hospital and long-term mortality in elderly non-ST-elevation myocardial infarction patients[J]. Aging Clin Exp Res, 2022, 34(7): 1687-1695. [13] Ozer Balin S, Ozcan EC, Ugur K. A new inflammatory marker of clinical and diagnostic importance in diabetic foot infection: systemic immune-inflammation index[J]. Int J Low Extrem Wounds, 2022: 15347346221130817. doi:10.1177/15347346221130817. [14] Zhang D, Wang T, Dong X, et al. Systemic immune-inflammation index for predicting the prognosis of critically ill patients with acute pancreatitis[J]. Int J Gen Med, 2021, 14: 4491-4498. doi:10.2147/ijgm.s314393. [15] Matthay MA, Arabi Y, Arroliga AC, et al. A new global definition of acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2024, 209(1): 37-47. [16] Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment[J]. Annu Rev Pathol, 2011, 6: 147-163. doi:10.1146/annurev-pathol-011110-130158. [17] Chen W, Janz DR, Bastarache JA, et al. Prehospital aspirin use is associated with reduced risk of acute respiratory distress syndrome in critically ill patients: a propensity-adjusted analysis[J]. Crit Care Med, 2015, 43(4): 801-807. [18] Livingstone SA, Wildi KS, Dalton HJ, et al. Coagulation dysfunction in acute respiratory distress syndrome and its potential impact in inflammatory subphenotypes[J]. Front Med(Lausanne), 2021, 8: 723217. doi:10.3389/fmed.2021.723217. [19] 李若寒, 李佳媚, 任佳佳, 等. 急性呼吸窘迫综合征中炎症和凝血的交互作用[J]. 中国急救医学, 2023, 43(9): 752-756. LI Ruohan, LI Jiamei, REN Jiajia, et al. Cross talks between coagulation and inflammation in acute respiratory distress syndrome[J]. Chinese Journal of Critical Care Medicine, 2023, 43(9): 752-756. [20] Venet F, Chung CS, Huang X, et al. Lymphocytes in the development of lung inflammation: a role for regulatory CD4+ T cells in indirect pulmonary lung injury[J]. J Immunol, 2009, 183(5): 3472-3480. [21] Hu B, Yang XR, Xu Y, et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma[J]. Clin Cancer Res, 2014, 20(23): 6212-6222. [22] Tang Y, Zeng X, Feng Y, et al. Association of systemic immune-inflammation index with short-term mortality of congestive heart failure: a retrospective cohort study[J]. Front Cardiovasc Med, 2021, 8: 753133. doi:10.3389/fcvm.2021.753133. [23] Jia L, Li C, Bi X, et al. Prognostic value of systemic immune-inflammation index among critically ill patients with acute kidney injury: a retrospective cohort study[J]. J Clin Med, 2022, 11(14): 3978. doi:10.3390/jcm11143978. [24] Gorman EA, OKane CM, McAuley DF. Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management[J]. Lancet, 2022, 400(10358): 1157-1170. [25] Schultz MJ, Van Oosten PJ, HOL L. Mortality among elderly patients with COVID-19 ARDS-age still does matter[J]. Pulmonology, 2023, 29(5): 353-355. [26] 徐婷, 张存泰. 免疫衰老和老年营养[J]. 中国临床保健杂志, 2023, 26(4): 446-451. XU Ting, ZHANG Cuntai. Immunosenescence and malnutrition in elderly people[J]. Chinese Journal of Clinical Healthcare, 2023, 26(4): 446-451. [27] Shu W, Guo S, Yang F, et al. Association between ARDS etiology and risk of noninvasive ventilation failure[J]. Ann Am Thorac Soc, 2022, 19(2): 255-263. [28] Killien EY, Milis B, Vavilala MS, et al. Association between age and acute respiratory distress syndrome development and mortality following trauma[J]. Journal of Trauma and Acute Care Surgery, 2019, 86(5): 844-852. [29] Huang I, Pranata R, Lim MA, et al. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis[J]. Ther Adv Respir Dis, 2020, 14: 1753466620937175. doi:10.1177/1753466620937175. [30] Iwamura APD, Tavares da Silva MR, Hümmelgen AL, et al. Immunity and inflammatory biomarkers in COVID-19: a systematic review[J]. Rev Med Virol, 2021, 31(4): e2199. doi:10.1002/rmv.2199. [31] Xu GG, Yang YS, Du YZ, et al. Clinical pathway for early diagnosis of COVID-19: updates from experience to evidence-based practice[J]. Clin Rev Allergy Immunol, 2020, 59(1): 89-100. [32] Saviano A, Wrensch F, Ghany MG, et al. Liver disease and coronavirus disease 2019: from pathogenesis to clinical care[J]. Hepatology, 2021, 74(2): 1088-1100. [33] Jalan R, Gines P, Olson JC, et al. Acute-on chronic liver failure[J]. J Hepatol, 2012, 57(6): 1336-1348. [34] Gacouin A, Locufier M, Uhel F, et al. Liver cirrhosis is independently associated with 90-day mortality in ARDS patients[J]. Shock, 2016, 45(1): 16-21. [35] Visconti L, Santoro D, Cernaro V, et al. Kidney-lung connections in acute and chronic diseases: current perspectives[J]. J Nephrol, 2016, 29(3): 341-348. |
[1] | SONG Tiantian, LI Zuokun, WANG Shuhui. Development of a nomogram model for individualized prediction of the risk of nosocomial infection after heart valve replacement in elderly patients [J]. Journal of Shandong University (Health Sciences), 2024, 62(1): 48-56. |
[2] | LIU Yan, LENG Shanshan, XIA Xiaona, DONG Hao, HUANG Chencui, MENG Xiangshui. Functional outcomes of 376 patients with supratentorial spontaneous intracerebral hemorrhage based on radiomic parameters [J]. Journal of Shandong University (Health Sciences), 2023, 61(5): 59-67. |
[3] | ZHONG Lu, XUE Fuzhong. A Lung cancer risk prediction model based on Bayesian network uncertainty inference [J]. Journal of Shandong University (Health Sciences), 2023, 61(4): 86-94. |
[4] | WANG Jianhua, SUN Shuqing, ZHANG Xiaodong, YANG Xiaoxiao, WANG Youjian, LU Jinbao, LI Zanwu. Construction of a risk prediction model for ventilator weaning in mechanically ventilated patients in ICU [J]. Journal of Shandong University (Health Sciences), 2023, 61(12): 86-93. |
[5] | ZHANG Minghui, WANG Liyun, WANG Yun, ZHANG Xinyue, SHA Kaihui. A nomogram analysis of the risk of kinesiophobia in patients with hip fracture after surgery [J]. Journal of Shandong University (Health Sciences), 2023, 61(11): 74-81. |
[6] | ZHAO Qidi, WANG Kai, ZHAO Xiaogang, YAN Tao, WANG Yadong, DU Jiajun. Constructing and validating a prognostic model for patients with stage IIIB non-small cell lung cancer based on SEER database [J]. Journal of Shandong University (Health Sciences), 2023, 61(10): 23-37. |
[7] | HE Shiqing, LI Wanwan, DONG Shuqing, MOU Jingyi, LIU Yuying, WEI Siyu, LIU Zhao, ZHANG Jiaxin. Construction of a prognostic risk model of pyroptosis-related genes in breast cancer based on database [J]. Journal of Shandong University (Health Sciences), 2022, 60(8): 34-43. |
[8] | YANG Lizhi, SUN Xiao, SHANG Mengmeng, GUO Lu, SHI Dandan, LI Jie. C-TIRADS-based nomogram for malignant risk prediction of thyroid nodules [J]. Journal of Shandong University (Health Sciences), 2022, 60(6): 64-69. |
[9] | YUAN Hongtao, JI Congshan, KANG Bing, QIN Songnan, YU Xinxin, GAO Lin, WANG Ximing. Diagnostic value of CT radiomics nomogram for adrenal lipid-poor adenoma and nodular hyperplasia [J]. Journal of Shandong University (Health Sciences), 2022, 60(4): 68-75. |
[10] | XIE Tonghui, CHEN Zhiqiang, CHANG Jianhua, ZHAO Danwen, XU Bowen, ZHI Xuting. Analysis of prognostic factors after radical resection of intrahepatic cholangiocarcinoma and establishment of a nomogram [J]. Journal of Shandong University (Health Sciences), 2021, 59(4): 93-99. |
[11] | ZHAO Jie, LI Yan, LI Ming, YU Dexin. Spiral CT in differentiating benign and malignant tumors with myxoid degeneration [J]. Journal of Shandong University (Health Sciences), 2021, 59(4): 100-107. |
[12] | XU Yuanyou, YANG Yachao, WANG Chunxia, MA Xiaotian, XUE Fuzhong, LIU Yanxun, WANG Ping. A risk prediction model of gastritis based on examination cohort [J]. Journal of Shandong University (Health Sciences), 2019, 57(6): 112-116. |
[13] | LI Jiqing, ZHAO Huanzong, SONG Binghong, ZHANG Lichun, LI Xiangyi, CHEN Yafei, WANG Ping, XUE Fuzhong. Risk prediction model of cardiovascular disease based on health management cohort [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 56-60. |
[14] | YU Tao, LIU Huanle, FENG Xin, XU Fuyin, CHEN Yafei, XUE Fuzhong, ZHANG Chengqi. A hypertension risk prediction model based on health management cohort [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 61-65. |
[15] | WANG Chunxia, XU Yibo, YANG Ning, XIA Bing, WANG Ping, XUE Fuzhong. A prediction model for coronary heart disease risks based on health management cohort [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(6): 66-71. |
|