Journal of Shandong University (Health Sciences) ›› 2024, Vol. 62 ›› Issue (7): 21-32.doi: 10.6040/j.issn.1671-7554.0.2024.0114
• 呼吸系统疾病精准诊疗专题 • Previous Articles Next Articles
WANG Jing1, LIU Xiaofei2, ZENG Rong3, XU Changjuan2, ZHANG Jintao2, DONG Liang2,3
CLC Number:
[1] Global Initiative for Asthma. Global strategy for asthma management and prevention [EB/OL].(2024-01-20)[2024-05-07]. https://ginasthma.org/2024-report/. [2] Reddel HK, Bacharier LB, Bateman ED, et al. Global initiative for asthma strategy 2021: executive summary and rationale for key changes[J]. Am J Respir Crit Care Med, 2022, 205(1): 17-35. [3] Hammad H, Lambrecht BN. The basic immunology of asthma[J]. Cell, 2021, 184(6): 1469-1485. [4] Garnish SE, Tovey Crutchfield EC, Murphy JM, et al. Add necroptosis to your asthma action plan[J]. Immunol Cell Biol, 2021, 99(8): 800-802. [5] Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways[J]. Nat Rev Mol Cell Biol, 2014, 15(2): 135-147. [6] Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation[J]. Nature, 2015, 517(7534): 311-320. [7] Green DR. The coming decade of cell death research: five riddles[J]. Cell, 2019, 177(5): 1094-1107. [8] Seo J, Nam YW, Kim S, et al. Necroptosis molecular mechanisms: recent findings regarding novel necroptosis regulators[J]. Exp Mol Med, 2021, 53(6): 1007-1017. [9] Faust H, Mangalmurti NS. Collateral damage: necroptosis in the development of lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318(2): L215-L225. [10] Zhang T, Yin CR, Boyd DF, et al. Influenza virus Z-RNAs induce ZBP1-mediated necroptosis[J]. Cell, 2020, 180(6): 1115-1129. [11] Baines KJ, Simpson JL, Wood LG, et al. Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples[J]. J Allergy Clin Immunol, 2011, 127(1): 153-160. [12] Kuo CS, Pavlidis S, Loza M, et al. T-helper cell type 2(Th2)and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED[J]. Eur Respir J, 2017, 49(2): 1602135. doi:10.1183/13993003.02135-2016. [13] Baines KJ, Fricker M, McDonald VM, et al. Sputum transcriptomics implicates increased p38 signalling activity in severe asthma[J]. Respirology, 2020, 25(7): 709-718. [14] Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures[J]. Bioinformatics, 2003, 19(3): 368-375. [15] Sun SL, Shen YH, Wang J, et al. Identification and validation of autophagy-related genes in chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2021, 16: 67-78. doi:10.2147/COPD.S288428. [16] Chen D, Wu WL, Yi LL, et al. A potential circRNA-miRNA-mRNA regulatory network in asthmatic airway epithelial cells identified by integrated analysis of microarray datasets[J]. Front Mol Biosci, 2021, 8: 703307. doi:10.3389/fmolb.2021.703307. [17] Khan I, Yousif A, Chesnokov M, et al. A decade of cell death studies: breathing new life into necroptosis[J]. Pharmacol Ther, 2021, 220: 107717. doi:10.1016/j.pharmthera.2020.107717. [18] Lu Z, van Eeckhoutte HP, Liu G, et al. Necroptosis signaling promotes inflammation, airway remodeling, and emphysema in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2021, 204(6): 667-681. [19] Oikonomou N, Schuijs MJ, Chatzigiagkos A, et al. Airway epithelial cell necroptosis contributes to asthma exacerbation in a mouse model of house dust mite-induced allergic inflammation[J]. Mucosal Immunol, 2021, 14(5): 1160-1171. [20] Miller MH, Shehat MG, Alcedo KP, et al. Frontline Science: RIP2 promotes house dust mite-induced allergic airway inflammation[J]. J Leukoc Biol, 2018, 104(3): 447-459. [21] Ait Yahia S, Audousset C, Alvarez-Simon D, et al. NOD1 sensing of house dust mite-derived microbiota promotes allergic experimental asthma[J]. J Allergy Clin Immunol, 2021, 148(2): 394-406. [22] Robert T. Regression shrinkage and selection via the lasso[J]. J R Stat Soc Ser B Methodol, 2018, 58(1): 267-288. [23] Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines[J]. Mach Learn, 2002, 46(1): 389-422. [24] Du LJ, Xu CY, Zeng ZM, et al. Exploration of induced sputum BIRC3 levels and clinical implications in asthma[J]. BMC Pulm Med, 2022, 22(1): 86. doi:10.1186/s12890-022-01887-2. [25] Huerta-Yepez S, Baay-Guzman GJ, Bebenek IG, et al. Hypoxia inducible factor promotes murine allergic airway inflammation and is increased in asthma and rhinitis[J]. Allergy, 2011, 66(7): 909-918. [26] Li HT, Ye C, Zhou M, et al. Moxifloxacin suppresses airway inflammation and modulates expression of caveolin-1 and flotillin-1 in airway smooth muscle cells of asthmatic rats[J]. Ann Transl Med, 2019, 7(18): 469. doi:10.21037/atm.2019.08.43. [27] Williams EJ, Negewo NA, Baines KJ. Role of the NLRP3 inflammasome in asthma: relationship with neutrophilic inflammation, obesity, and therapeutic options[J]. J Allergy Clin Immunol, 2021, 147(6): 2060-2062. [28] Kim HY, Lee HJ, Chang YJ, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity[J]. Nat Med, 2014, 20(1): 54-61. [29] Ma M, Li GY, Qi MH, et al. Inhibition of the inflammasome activity of NLRP3 attenuates HDM-induced allergic asthma[J]. Front Immunol, 2021, 12: 718779. doi:10.3389/fimmu.2021.718779. [30] Tan HT, Hagner S, Ruchti F, et al. Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice[J]. Allergy, 2019, 74(2): 294-307. [31] Li LF, Yang L, Cheng SQ, et al. Lung adenocarcinoma-intrinsic GBE1 signaling inhibits anti-tumor immunity[J]. Mol Cancer, 2019, 18(1): 108. doi:10.1186/s12943-019-1027-x. [32] Liang YC, Lei YY, Liang M, et al. GBE1 is an independent prognostic marker and associated with CD163+ tumor-associated macrophage infiltration in lung adenocarcinoma[J]. Front Oncol, 2021, 11: 781344. doi:10.3389/fonc.2021.781344. [33] Wei WP, Huang JQ, Ma Y, et al. IL-1 signaling pathway molecules as key markers in childhood asthma[J]. Pediatr Allergy Immunol, 2021, 32(2): 305-313. [34] Chen L, Heikkinen L, Wang CL, et al. Trends in the development of miRNA bioinformatics tools[J]. Brief Bioinform, 2019, 20(5): 1836-1852. [35] Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J]. Nucleic Acids Res, 2014, 42(Database issue): D92-D97. [36] Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs[J]. Elife, 2015, 4: e05005. doi:10.7554/eLife.05005. [37] Chen YH, Wang XW. miRDB: an online database for prediction of functional microRNA targets[J]. Nucleic Acids Res, 2020, 48(D1): D127-D131. [38] Kang JJ, Tang Q, He J, et al. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility[J]. Nucleic Acids Res, 2022, 50(D1): D326-D332. [39] Tang HP, Han XL, Li TT, et al. Protective effect of miR-138-5p inhibition modified human mesenchymal stem cell on ovalbumin-induced allergic rhinitis and asthma syndrome[J]. J Cell Mol Med, 2021, 25(11): 5038-5049. [40] Liu F, Zhang J, Zhang D, et al. Follistatin-related protein 1 in asthma: miR-200b-3p interactions affect airway remodeling and inflammation phenotype[J]. Int Immunopharmacol, 2022, 109: 108793. doi: 10.1016/j.intimp.2022.108793. [41] Kim BS, Jung JY, Jeon JY, et al. Circulating hsa-miR-30e-5p, hsa-miR-92a-3p, and hsa-miR-223-3p may be novel biomarkers in systemic lupus erythematosus [J]. HLA, 2016, 8(4): 187-193. |
[1] | YAN Jinyan, YANG Chun, LI Lei, WU Fuling, JIAO Yongli, ZHANG Xiaowei, LI Jing, ZHANG Ruizhen, WANG Lei, MA Xiang. Correlation between asthma and pertussis infection in children of Shandong Province, China [J]. Journal of Shandong University (Health Sciences), 2024, 62(7): 33-41. |
[2] | GUO Zhenjiang, WANG Ning, ZHAO Guangyuan, DU Liqiang, CUI Zhaobo, LIU Fangzhen. Development of preoperative models for predicting positive esophageal margin in proximal gastric cancer based on machine learning [J]. Journal of Shandong University (Health Sciences), 2024, 62(7): 78-83. |
[3] | SUN Congcong, CUI Wenjing, ZHANG Jintao, ZHANG Dong, LIU Xiaofei, PAN Yun, QI Qian, XU Jiawei, ZENG Rong, GUO Hongxi, DONG Liang. Roles of ferroptosis in asthmatic airway remodeling [J]. Journal of Shandong University (Health Sciences), 2024, 62(7): 1-9. |
[4] | WANG Ting, ZHANG Li, WANG Gang. Neuropsychological asthma [J]. Journal of Shandong University (Health Sciences), 2024, 62(5): 28-34. |
[5] | XU Fang, TIAN Guoxiong, SUN Beibei, CHEN Xinyi, CHEN Gaoying, ZHANG Ruiqi, YING Songmin, WU Miaolian, ZHANG Chao, WU Youqian. Research progress on biological and cellular therapies for severe asthma [J]. Journal of Shandong University (Health Sciences), 2024, 62(5): 35-42. |
[6] | SHI Shuochuan, ZENG Rong, ZHANG Jintao, ZHANG Dong, PAN Yun, LIU Xiaofei, XU Changjuan, WANG Ying, DONG Liang. Bioinformatics-based exploration of potential differential immune genes and immune infiltration signatures in bronchial asthma [J]. Journal of Shandong University (Health Sciences), 2024, 62(5): 43-53. |
[7] | ZHANG Jintao, DONG Liang. Airway epithelium and epithelial-derived cytokines in asthma: reflection and outlook [J]. Journal of Shandong University (Health Sciences), 2024, 62(5): 1-6. |
[8] | DING Yiren, LIU Wanying, YAO Lei, YAO Xin. Research progress of the treatment of asthma with macrolide antibiotics [J]. Journal of Shandong University (Health Sciences), 2024, 62(5): 21-27. |
[9] | LIANG Yongyuan, CAI Peifei, ZHENG Guixi. Establishment and value assessment of colon cancer diagnostic models based on multiple variables and different machine learning algorithms [J]. Journal of Shandong University (Health Sciences), 2024, 62(2): 51-59. |
[10] | QIN Jinjin, CAO Chenyuan, XING Jiejie, AN Yan, HUANG Yuxiang. Predication and bioinformatics analysis of preeclampsia-related Siglec-6 core genes [J]. Journal of Shandong University (Health Sciences), 2024, 62(1): 31-37. |
[11] | ZHANG Jinghui, WANG Juan, ZHAO Yujie, DUAN Miao, LIU Yiran, LIN Minjuan, QIAO Xu, LI Zhen, ZUO Xiuli. Construction of a machine learning-based tongue diagnosis model for gastrointestinal diseases [J]. Journal of Shandong University (Health Sciences), 2024, 62(1): 38-47. |
[12] | CHEN Yingjun, LIU Tonggang. Comprehensive bioinformatics analysis to identify differentially expressed genes for aberrant methylation modification in HBV-associated HCC [J]. Journal of Shandong University (Health Sciences), 2023, 61(9): 101-117. |
[13] | BU Meiling, WANG Jinrong, FENG Mei, SUN Lifeng. Mechanism of FOXM1 in acute exacerbation of asthma induced by respiratory virus infection in mice [J]. Journal of Shandong University (Health Sciences), 2023, 61(6): 1-9. |
[14] | Nan WU,Jianguo ZHANG,Yuanpeng ZHU,Guilin CHEN,Zefu CHEN. Application of artificial intelligence in the diagnosis and treatment of spinal deformity [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 14-20. |
[15] | Yajun LIU,Zhao LANG,Anyi GUO,Wenyong LIU. Progresses and trends of intelligent technologies in orthopedic shock wave therapy [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 7-13. |
|