Journal of Shandong University (Health Sciences) ›› 2024, Vol. 62 ›› Issue (5): 21-27.doi: 10.6040/j.issn.1671-7554.0.2024.0131

• Precision medicine in chronic airway diseases—Expert Overview • Previous Articles    

Research progress of the treatment of asthma with macrolide antibiotics

DING Yiren, LIU Wanying, YAO Lei, YAO Xin   

  1. Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of NanjingMedical University, Nanjing 210029, Jiangsu, China
  • Published:2024-05-29

Abstract: Asthma is a chronic inflammatory disease of the airways, and inhaled corticosteroids are the main treatment. However, a small number of patients cannot be effectively controlled, and new treatment methods are urgently needed for such patients. In recent years, in addition to the research on biological agents, there has been considerable interest in the therapeutic potential of macrolide antibiotics in asthma. This article provides a systematic review of the efficacy, possible mechanisms, and adverse reactions of macrolide antibiotics in the treatment of asthma.

Key words: Pulmonary disease, Bronchial asthma, Macrolide antibiotics, Acute exacerbation, Treatment method

CLC Number: 

  • R562.2
[1] Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors[J]. Semin Immunopathol, 2020, 42(1): 5-15.
[2] Porsbjerg C, Melén E, Lehtimäki L, et al. Asthma[J]. Lancet, 2023, 401(10379): 858-873.
[3] Levy ML, Bacharier LB, Bateman E, et al. Key recommendations for primary care from the 2022 Global Initiative for Asthma(GINA)update[J]. NPJ Prim Care Respir Med, 2023, 33(1): 7. doi:10.1038/s41533-023-00330-1.
[4] Idanesimhe Sado A, Afzal MS, Kannekanti L, et al. A meta-analysis on predictors of mortality among patients hospitalized for acute exacerbation of asthma[J]. Cureus, 2023, 15(2): e35225. doi:10.7759/cureus.35225.
[5] Lenz KD, Klosterman KE, Mukundan H, et al. Macrolides: from toxins to therapeutics[J]. Toxins, 2021, 13(5): 347. doi:10.3390/toxins13050347.
[6] Zimmermann P, Ziesenitz VC, Curtis N, et al. The immunomodulatory effects of macrolides-a systematic review of the underlying mechanisms[J]. Front Immunol, 2018, 9: 302. doi:10.3389/fimmu.2018.00302.
[7] Kudoh S, Uetake T, Hagiwara K, et al. Clinical effects of low-dose long-term erythromycin chemotherapy on diffuse panbronchiolitis[J]. Nihon Kyobu Shikkan Gakkai Zasshi, 1987, 25(6): 632-642.
[8] Pollock J, Chalmers JD. The immunomodulatory effects of macrolide antibiotics in respiratory disease[J]. Pulm Pharmacol Ther, 2021, 71: 102095. doi:10.1016/j.pupt.2021.102095.
[9] Ortega H, Nickle D, Carter L. Rhinovirus and asthma: challenges and opportunities[J]. Rev Med Virol, 2021, 31(4): e2193. doi:10.1002/rmv.2193.
[10] Kelly JT, Busse WW. Host immune responses to rhinovirus: mechanisms in asthma[J]. J Allergy Clin Immunol, 2008, 122(4): 671-682.
[11] Jackson DJ, Gern JE. Rhinovirus infections and their roles in asthma: etiology and exacerbations[J]. J Allergy Clin Immunol Pract, 2022, 10(3): 673-681.
[12] Oliver ME, Hinks TSC. Azithromycin in viral infections[J]. Rev Med Virol, 2021, 31(2): e2163. doi:10.1002/rmv.2163.
[13] Shukla SD, Taylor SL, Gibson PG, et al. Add-on azithromycin reduces sputum cytokines in non-eosinophilic asthma: an AMAZES substudy[J]. Thorax, 2021, 76(7): 733-736.
[14] Peebles RS Jr, Aronica MA. Proinflammatory pathways in the pathogenesis of asthma[J]. Clin Chest Med, 2019, 40(1): 29-50.
[15] Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system[J]. Wiley Interdiscip Rev Syst Biol Med, 2016, 8(3): 227-241.
[16] Vran ci c M, Banjanac M, Nuji c K, et al. Azithromycin distinctively modulates classical activation of human monocytes in vitro[J]. Br J Pharmacol, 2012, 165(5): 1348-1360.
[17] Kandikattu HK, Venkateshaiah SU, Verma AK, et al. Tacrolimus(FK506)treatment protects allergen-, IL-5- and IL-13-induced mucosal eosinophilia[J]. Immunology, 2021, 163(2): 220-235.
[18] Sato E, Nelson DK, Koyama S, et al. Erythromycin modulates eosinophil chemotactic cytokine production by human lung fibroblasts in vitro[J]. Antimicrob Agents Chemother, 2001, 45(2): 401-406.
[19] Boberg E, Weidner J, Malmhäll C, et al. Rapamycin dampens inflammatory properties of bone marrow ILC2s in IL-33-induced eosinophilic airway inflammation[J]. Front Immunol, 2022, 13: 915906. doi:10.3389/fimmu.2022.915906.
[20] Zhao X, Yu FQ, Huang XJ, et al. Azithromycin influences airway remodeling in asthma via the PI3K/Akt/MTOR/HIF-1α/VEGF pathway[J]. J Biol Regul Homeost Agents, 2018, 32(5): 1079-1088.
[21] Hur GY, Broide DH. Genes and pathways regulating decline in lung function and airway remodeling in asthma[J]. Allergy Asthma Immunol Res, 2019, 11(5): 604-621.
[22] Sadeghdoust M, Mirsadraee M, Aligolighasemabadi F, et al. Effect of azithromycin on bronchial wall thickness in severe persistent asthma: a double-blind placebo-controlled randomized clinical trial[J]. Respir Med, 2021, 185: 106494. doi:10.1016/j.rmed.2021.106494.
[23] Tojima I, Shimizu S, Ogawa T, et al. Anti-inflammatory effects of a novel non-antibiotic macrolide, EM900, on mucus secretion of airway epithelium[J]. Auris Nasus Larynx, 2015, 42(4): 332-336.
[24] Hara K, Kondo M, Tsuji M, et al. Clarithromycin suppresses IL-13-induced goblet cell metaplasia via the TMEM16A-dependent pathway in guinea pig airway epithelial cells[J]. Respir Investig, 2019, 57(1): 79-88.
[25] Mann TS, Larcombe AN, Wang KCW, et al. Azithromycin inhibits mucin secretion, mucous metaplasia, airway inflammation, and airways hyperresponsiveness in mice exposed to house dust mite extract[J]. Am J Physiol Lung Cell Mol Physiol, 2022, 322(5): L683-L698.
[26] Tagaya E, Tamaoki J, Kondo M, et al. Effect of a short course of clarithromycin therapy on sputum production in patients with chronic airway hypersecretion[J]. Chest, 2002, 122(1): 213-218.
[27] Lu S, Liu H, Sr Farley JM. Macrolide antibiotics inhibit mucus secretion and calcium entry in Swine airway submucosal mucous gland cells[J]. J Pharmacol Exp Ther, 2011, 336(1): 178-187.
[28] Park HK, Choi Y, Lee DH, et al. Altered gut microbiota by azithromycin attenuates airway inflammation in allergic asthma[J]. J Allergy Clin Immunol, 2020, 145(5): 1466-1469.e8.
[29] Roduit C, Frei R, Ferstl R, et al. High levels of butyrate and propionate in early life are associated with protection against atopy[J]. Allergy, 2019, 74(4): 799-809.
[30] Theiler A, Bärnthaler T, Platzer W, et al. Butyrate ameliorates allergic airway inflammation by limiting eosinophil trafficking and survival[J]. J Allergy Clin Immunol, 2019, 144(3): 764-776.
[31] Wang YY, Zijp TR, Bahar MA, et al. Effects of prophylactic antibiotics on patients with stable COPD: a systematic review and meta-analysis of randomized controlled trials[J]. J Antimicrob Chemother, 2018, 73(12): 3231-3243.
[32] Vermeersch K, Gabrovska M, Aumann J, et al. Azithromycin during acute chronic obstructive pulmonary disease exacerbations requiring hospitalization(BACE). A multicenter, randomized, double-blind, placebo-controlled trial[J]. Am J Respir Crit Care Med, 2019, 200(7): 857-868.
[33] Pomares X, Montón C, Bullich M, et al. Clinical and safety outcomes of long-term azithromycin therapy in severe COPD beyond the first year of treatment[J]. Chest, 2018, 153(5): 1125-1133.
[34] Kew KM, Undela K, Kotortsi I, et al. Macrolides for chronic asthma[J]. Cochrane Database Syst Rev, 2015(9): CD002997. doi:10.1002/14651858.CD002997.pub4.
[35] Johnston SL, Szigeti M, Cross M, et al. Azithromycin for acute exacerbations of asthma: the AZALEA randomized clinical trial[J]. JAMA Intern Med, 2016, 176(11): 1630-1637.
[36] Murray CS, Lucas SJ, Blakey J, et al. A real-life comparative effectiveness study into the addition of antibiotics to the management of asthma exacerbations in primary care[J]. Eur Respir J, 2021, 58(1): 2003599. doi:10.1183/13993003.03599-2020.
[37] Gibson PG, Yang IA, Upham JW, et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma(AMAZES): a randomised, double-blind, placebo-controlled trial[J]. Lancet, 2017, 390(10095): 659-668.
[38] Hiles SA, McDonald VM, Guilhermino M, et al. Does maintenance azithromycin reduce asthma exacerbations? An individual participant data meta-analysis[J]. Eur Respir J, 2019, 54(5): 1901381. doi:10.1183/13993003.01381-2019.
[39] Undela K, Goldsmith L, Kew KM, et al. Macrolides versus placebo for chronic asthma[J]. Cochrane Database Syst Rev, 2021, 11(11): CD002997. doi:10.1002/14651858.CD002997.pub5.
[40] Fukuda Y, Horita N, Aga M, et al. Efficacy and safety of macrolide therapy for adult asthma: a systematic review and meta-analysis[J]. Respir Investig, 2024, 62(2): 206-215.
[41] ONeill C, Gibson PG, Heaney LG, et al. The cost-effectiveness of azithromycin in reducing exacerbations in uncontrolled asthma[J]. Eur Respir J, 2021, 57(2): 2002436. doi:10.1183/13993003.02436-2020.
[42] Venkatesan P. 2023 GINA report for asthma[J]. Lancet Respir Med, 2023, 11(7): 589. doi:10.1016/S2213-2600(23)00230-8.
[43] Lei WT, Lin HH, Tsai MC, et al. The effects of macrolides in children with reactive airway disease: a systematic review and meta-analysis of randomized controlled trials[J]. Drug Des Devel Ther, 2018, 12: 3825-3845. doi:10.2147/DDDT.S183527.
[44] Ghimire JJ, Jat KR, Sankar J, et al. Azithromycin for poorly controlled asthma in children: a randomized controlled trial[J]. Chest, 2022, 161(6): 1456-1464.
[45] Wan KS, Liu YC, Huang CS, et al. Effects of low-dose clarithromycin added to fluticasone on inflammatory markers and pulmonary function among children with asthma: a randomized clinical trial[J]. Allergy Rhinol, 2016, 7(3): 131-134.
[46] Koutsoubari I, Papaevangelou V, Konstantinou GN, et al. Effect of clarithromycin on acute asthma exacerbations in children: an open randomized study[J]. Pediatr Allergy Immunol, 2012, 23(4): 385-390.
[47] Maeda T, Khurana S. Heterogeneity of treatment response to asthma[J]. Adv Exp Med Biol, 2023, 1426: 143-161. doi:10.1007/978-3-031-32259-4_7.
[48] Brusselle GG, Vanderstichele C, Jordens P, et al. Azithromycin for prevention of exacerbations in severe asthma(AZISAST): a multicentre randomised double-blind placebo-controlled trial[J]. Thorax, 2013, 68(4): 322-329.
[49] Niessen NM, Gibson PG, Baines KJ, et al. Sputum TNF markers are increased in neutrophilic and severe asthma and are reduced by azithromycin treatment[J]. Allergy, 2021, 76(7): 2090-2101.
[50] Simpson JL, Powell H, Boyle MJ, et al. Clarithromycin targets neutrophilic airway inflammation in refractory asthma[J]. Am J Respir Crit Care Med, 2008, 177(2): 148-155.
[51] Carlsson CJ, Rasmussen MA, Pedersen SB, et al. Airway immune mediator levels during asthma-like symptoms in young children and their possible role in response to azithromycin[J]. Allergy, 2021, 76(6): 1754-1764.
[52] Thorsen J, Stokholm J, Rasmussen MA, et al. The airway microbiota modulates effect of azithromycin treatment for episodes of recurrent asthma-like symptoms in preschool children: a randomized clinical trial[J]. Am J Respir Crit Care Med, 2021, 204(2): 149-158.
[53] Taylor SL, Ivey KL, Gibson PG, et al. Airway abundance of Haemophilus influenzae predicts response to azithromycin in adults with persistent uncontrolled asthma[J]. Eur Respir J, 2020, 56(4): 2000194. doi:10.1183/13993003.00194-2020.
[54] Hansen MP, Scott AM, McCullough A, et al. Adverse events in people taking macrolide antibiotics versus placebo for any indication[J]. Cochrane Database Syst Rev, 2019, 1(1): CD011825. doi:10.1002/14651858.CD011825.pub2.
[55] Smith D, Du Rand IA, Addy C, et al. British Thoracic Society guideline for the use of long-term macrolides in adults with respiratory disease[J]. BMJ Open Respir Res, 2020, 7(1): e000489. doi:10.1136/bmjresp-2019-000489.
[56] Ray WA, Murray KT, Hall K, et al. Azithromycin and the risk of cardiovascular death[J]. N Engl J Med, 2012, 366(20): 1881-1890.
[57] Yang ZJ, Prinsen JK, Bersell KR, et al. Azithromycin causes a novel proarrhythmic syndrome[J]. Circ Arrhythm Electrophysiol, 2017, 10(4): e003560. doi:10.1161/CIRCEP.115.003560.
[58] Smith D, Du Rand I, Addy CL, et al. British Thoracic Society guideline for the use of long-term macrolides in adults with respiratory disease[J]. Thorax, 2020, 75(5): 370-404.
[59] Avedissian SN, Rhodes NJ, Ng TMH, et al. The potential for QT interval prolongation with chronic azithromycin therapy in adult cystic fibrosis patients[J]. Pharmacotherapy, 2019, 39(6): 718-723.
[60] Gibson PG, Yang IA, Upham JW, et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma(AMAZES): a randomised, double-blind, placebo-controlled trial[J]. Lancet, 2017, 390(10095): 659-668.
[61] Ghimire JJ, Jat KR, Sankar J, et al. Azithromycin for poorly controlled asthma in children: a randomized controlled trial[J]. Chest, 2022, 161(6): 1456-1464.
[62] Trac MH, McArthur E, Jandoc R, et al. Macrolide antibiotics and the risk of ventricular arrhythmia in older adults[J]. CMAJ, 2016, 188(7): E120-E129.
[63] Assimon MM, Pun PH, Wang L, et al. Azithromycin use increases the risk of sudden cardiac death in patients with hemodialysis-dependent kidney failure[J]. Kidney Int, 2022, 102(4): 894-903.
[64] Taylor SL, Leong LEX, Mobegi FM, et al. Long-term azithromycin reduces Haemophilus influenzae and increases antibiotic resistance in severe asthma[J]. Am J Respir Crit Care Med, 2019, 200(3): 309-317.
[65] Heidary M, Ebrahimi Samangani A, Kargari A, et al. Mechanism of action, resistance, synergism, and clinical implications of azithromycin[J]. J Clin Lab Anal, 2022, 36(6): e24427. doi:10.1002/jcla.24427.
[66] Carrera-Salinas A, González-Díaz A, Ehrlich RL, et al. Genetic adaptation and acquisition of macrolide resistance in Haemophilus spp. during persistent respiratory tract colonization in chronic obstructive pulmonary disease(COPD)patients receiving long-term azithromycin treatment[J]. Microbiol Spectr, 2023, 11(1): e0386022. doi:10.1128/spectrum.03860-22.
[67] Segal LN, Clemente JC, Wu BG, et al. Randomised, double-blind, placebo-controlled trial with azithromycin selects for anti-inflammatory microbial metabolites in the emphysematous lung[J]. Thorax, 2017, 72(1): 13-22.
[68] Burr LD, Taylor SL, Richard A, et al. Assessment of long-term macrolide exposure on the oropharyngeal microbiome and macrolide resistance in healthy adults and consequences for onward transmission of resistance[J]. Antimicrob Agents Chemother, 2022, 66(4): e0224621. doi:10.1128/aac.02246-21.
[69] Lin YC, Chen YC, Kuo CH, et al. Antibiotic exposure and asthma development in children with allergic rhinitis[J]. J Microbiol Immunol Infect, 2020, 53(5): 803-811.
[1] WANG Fengyan, LIANG Zhenyu, LI Xueping, CHEN Rongchang. Clinical research hotspots of chronic obstructive pulmonary disease in recent years [J]. Journal of Shandong University (Health Sciences), 2024, 62(5): 7-15.
[2] SHEN Yongchun, WEN Fuqiang. Research progress of mitochondrial damage-associated molecular patterns as biomarkers for chronic obstructive pulmonary disease [J]. Journal of Shandong University (Health Sciences), 2024, 62(5): 16-20.
[3] WU Lin, SHI Chenxi, TONG Xing. Pulmonary benign metastasizing leiomyoma: a report of 7 cases and literature review [J]. Journal of Shandong University (Health Sciences), 2024, 62(4): 78-84.
[4] YANG Liping, MU Tingting, YANG Yujuan, ZHANG Yu, SONG Xicheng. Effects of inhaled allergens on pulmonary function in children with adenoid hypertrophy complicated with bronchial asthma [J]. Journal of Shandong University (Health Sciences), 2020, 58(3): 107-112.
[5] ZHANG Ning, YANG Yan, LI Rui, YIN Yunhong, LI Hao, QU Yiqing. Analysis of risk factors and drug resistance of Acinetobacter baumannii in patients with chronic obstructive pulmonary disease [J]. Journal of Shandong University (Health Sciences), 2019, 57(9): 88-96.
[6] HUA Xingxing, SUN Xiaojie, ZHAO Deli, LIU Weidong, NI Zhisong, ZOU Yuewei, MA Zhongfeng, YAO Nengliang, WANG Jialin, WANG Haipeng. Correlation analysis of treatment methods and medical expenditures of cancer patients in five counties of Shandong Province [J]. Journal of Shandong University (Health Sciences), 2018, 56(6): 69-75.
[7] YU Xiaolin, ZHANG Jun, YANG Liu, ZHOU Lin, CUI Liangliang, ZHANG Ji. Epidemiological characteristics of COPD patients attacked by respiratory system diseases during the flu season in Jinan City [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2017, 55(3): 79-82.
[8] GU Jianhua, MA Xiaotian, LI Jiqing, XUE Fuzhong, WANG Jialin. Risk prediction model of chronic obstructive pulmonary disease in health management cohort [J]. Journal of Shandong University (Health Sciences), 2017, 55(12): 62-65.
[9] LIU Xiaojuan, DING Lijie, KANG Fengling, ZHOU Miao, XUE Fuzhong. A prediction model for bronchial asthma risk based on a health management population [J]. Journal of Shandong University (Health Sciences), 2017, 55(12): 56-61.
[10] PAN Qing, LÜ Zhifang. Clinical application value of the new guide for patients with chronic obstructive pulmonary disease [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2016, 54(3): 63-67.
[11] WU Zhen, SONG Guodong, WANG Wei. Effects of statins on patients with chronic obstructive pulmonary disease: a Meta analysis [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(2): 12-18.
[12] DING Qi-cui1, WANG Wei1, WANG Yong-bin1, CHEN Xu-dong2, WU Qian1. Effect of simvastatin on lung apoptotic factor in chronic
obstructive pulmonary disease rat models
[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2012, 50(6): 65-.
[13] WANG Dexiang1, JI Xiu-li1,2, MA Dedong1, ZHANG Yu-ke1, HE Bao-long1, WANG Wen-qiao1, XIAO Wei1. The economic burden of bronchial asthma and its related factors in Jinan [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2012, 50(5): 124-128.
[14] LI Ting-tian1, SHAO Lei2, ZHAI Cong-ying1, YIN Kang1, YANG Yan-ping1,2. Determination of the concentration of SIgA in BALF in rats with chronic  obstructive pulmonary disease and diabetes mellitus [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(4): 17-.
[15] . Epidemiological status and related risk factors of COPD in  urban residents in Jinan [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2011, 49(2): 128-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!