Journal of Shandong University (Health Sciences) ›› 2023, Vol. 61 ›› Issue (3): 7-13.doi: 10.6040/j.issn.1671-7554.0.2022.1331

• Expert Overview • Previous Articles     Next Articles

Progresses and trends of intelligent technologies in orthopedic shock wave therapy

Yajun LIU1,2,Zhao LANG1,2,Anyi GUO1,2,Wenyong LIU3,4,*()   

  1. 1. National Center for Orthopedics, Beijing Jishuitan Hospital, Beijing 100035, China
    2. Beijing Research Institute of Traumatology and Orthopedics, Beijing 100035, China
    3. School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
    4. Beijing Advanced Innovation Center for Biomedical Engineering, Beijing 100083, China
  • Received:2022-11-21 Online:2023-03-10 Published:2023-03-24
  • Contact: Wenyong LIU E-mail:wyliu@buaa.edu.cn

Abstract:

Extracorporeal shock wave therapy (ESWT) is widely adopted in clinical orthopedics for its safe and non-invasive treatment. However, the experience-based subjective decision-making and long-lasting manual operation of physicians in the conventional orthopedic ESWT have limited its further development. As intelligent technologies are rapidly getting into the orthopedic ESWT, this review summarizes the state-of-the-art of research and application of intelligent technologies in orthopedic ESWT from aspects of computer navigation, machine learning and robotics. Computer navigation technologies can intuitively assist physicians to accurately locate the shock wave probe on the anatomical target of patients. The machine learning methods can automatically predict energy parameters in ESWT. Robotic systems have demonstrated their potential advantages in clinical efficacy especially in the dramatical alleviation of the operation intensity of physicians. These intelligent technologies provide comprehensive support for intellectualization of orthopedic ESWT from eye, brain and hand, respectively. This review also concludes the future technical trends from aspects of the ESWT biological mechanism and dose-effect relationship, the treatment protocol planning and usability of machine learning, and the treatment automation and robotic assistance.

Key words: Extracorporeal shock wave therapy, Orthopedics, Computer navigation, Machine learning, Medical robot

CLC Number: 

  • R454
1 中华医学会物理医学与康复学分会, 肌肉骨骼疾病体外冲击波治疗专家共识组. 肌肉骨骼疾病体外冲击波治疗专家共识[J]. 中华物理医学与康复杂志, 2019, 41 (7): 481- 487.
doi: 10.3760/cma.j.issn.0254-1424.2019.07.001
2 Chaussy C , Brendel W , Schmiedt E . Extracorporeally induced destruction of kidney stones by shock waves[J]. Lancet, 1980, 2 (8207): 1265- 1268.
3 Park SH , Park JB , Weinstein JN , et al. Application of extracorporeal shock wave lithotripter (ECSWL) in orthopedics. I. Foundations and overview[J]. J Appl Biomater, 1991, 2 (2): 115- 126.
doi: 10.1002/jab.770020207
4 Fan H. The usage of extracorporeal shockwave therapy in rehabilitation medicine[C]// 2020 4th International Conference on Computational Biology and Bioinformatics, December 27-29, 2020, Bali Island, Indonesia: ICCBB'20, 42-45. doi: 10.1145/3449258.3449266.
5 Han XG , Tian W . Artificial intelligence in orthopedic surgery: current state and future perspective[J]. Chin Med J (Engl), 2019, 132 (21): 2521- 2523.
doi: 10.1097/CM9.0000000000000479
6 Schatz KD , Nehrer S , Dorotka R , et al. Computer-navigated high-energy shock wave therapy following failed distraction treatment of congenital tibial pseudarthrosis[J]. Orthopade, 2002, 31 (7): 663- 666.
doi: 10.1007/s00132-002-0327-8
7 綦惠, 杰永生, 郑蕊, 等. 放散式体外冲击波对软骨细胞生物学行为的影响[J]. 北京生物医学工程, 2020, 39 (3): 278- 284.
doi: 10.3969/j.issn.1002-3208.2020.03.009.
QI Hui , JIE Yongsheng , ZHENG Rui , et al. Effect of radial extracorporeal shock wave on the biological behaviors of chondrocytes[J]. Beijing Biomedical Engineering, 2020, 39 (3): 278- 284.
doi: 10.3969/j.issn.1002-3208.2020.03.009.
8 Li B , Qang R , Huang X , et al. Extracorporeal shock wave therapy promotes osteogenic differentiation in a rabbit osteoporosis model[J]. Front Endocrinol (Lausanne), 2021, 12, 627718.
doi: 10.3389/fendo.2021.627718
9 Kobayashi M , Chijimatsu R , Yoshikawa H , et al. Extracorporeal shock wave therapy accelerates endochondral ossification and fracture healing in a rat femur delayed-union model[J]. Biochem Biophys Res Commun, 2020, 530 (4): 632- 637.
doi: 10.1016/j.bbrc.2020.07.084
10 宋轲, 刘寰, 武文亮, 等. 骨髓间充质干细胞、血小板凝胶和体外冲击波联合应用治疗骨不连[J]. 山东大学学报(医学版), 2016, 54 (6): 1- 6.
SONG Ke , LIU Huan , WU Wenliang , et al. Combination of bone marrow mesenchymal stem cells, platelet gel and extrocorporeal shock wave on bone regeneration[J]. Journal of Shandong University (Health Sciences), 2016, 54 (6): 1- 6.
11 Chou WY , Cheng JH , Wang CJ , et al. Shockwave targeting on subchondral bone is more suitable than articular cartilage for knee osteoarthritis[J]. Int J Med Sci, 2019, 12 (1): 156- 166.
12 Liu Y , Chen X , Guo A , et al. Quantitative assessments of mechanical responses upon radial extracorporeal shock wave therapy[J]. Adv Sci (Weinh), 2018, 5 (3): 1700797.
doi: 10.1002/advs.201700797
13 Alkhamaali ZK , Crocombe AD , Solan MC , et al. Finite element modelling of radial shock wave therapy for chronic plantar fasciitis[J]. Comput Methods Biomech Biomed Engin, 2016, 19 (10): 1069- 1078.
doi: 10.1080/10255842.2015.1096348
14 Eremina G, Smolin A. Shock-wave impact on the knee joint affected with osteoarthritis and after arthroplasty[EB/OL]. (2022-05-31)[2022-07-15]. https://doi.org/10.1016/j.dt.2022.06.002.
15 Chen Y , Lyu K , Lu J , et al. Biological response of extracorporeal shock wave therapy to tendinopathy in vivo (review)[J]. Review Front Vet Sci, 2022, 9, 851894.
doi: 10.3389/fvets.2022.851894
16 Ke MJ , Chen LC , Chou YC , et al. The dose-dependent efficiency of radial shock wave therapy for patients with carpal tunnel syndrome: a prospective, randomized, single-blind, placebo-controlled trial[J]. Sci Rep, 2016, 6, 38344.
doi: 10.1038/srep38344
17 Mittermayr R , Haffner N , Feichtinger X , et al. The role of shockwaves in the enhancement of bone repair-from basic principles to clinical application[J]. Injury, 2021, 52 (Suppl 2): S84- S90.
doi: 10.1016/j.injury.2021.02.081
18 Schmitz C , Csaszar NB , Milz S , et al. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: a systematic review on studies listed in the PEDro database[J]. Br Med Bull, 2015, 116 (1): 115- 138.
19 Zhang YF , Liu Y , Chou SW , et al. Dose-related effects of radial extracorporeal shock wave therapy for knee osteoarthritis: a randomized controlled trial[J]. J Rehabil Med, 2021, 53 (1): jrm00144.
doi: 10.2340//6501977-2782
20 Fiani B , Davati C , Griepp DW , et al. Enhanced spinal therapy: extracorporeal shock wave therapy for the spine[J]. Cureus, 2020, 12 (10): e11200.
doi: 10.7759/cureus.11200
21 张继英, 侯宇, 薛涛, 等. 不同频率冲击波促进兔管状骨成骨的实验研究[J]. 中国运动医学杂志, 2010, 29 (1): 51- 55.
doi: 10.16038/j.1000-6710.2010.01.008
ZHANG Jiying , HOU Yu , XUE Tao , et al. An experimental pathological study of different frequency extracorporeal shock wave induced tibia osteogenesis in rabbits[J]. Chinese Journal of Sports Medicine, 2010, 29 (1): 51- 55.
doi: 10.16038/j.1000-6710.2010.01.008
22 Zhang X , Yan X , Wang C , et al. The dose-effect relationship in extracorporeal shock wave therapy: the optimal parameter for extracorporeal shock wave therapy[J]. J Surg Res, 2014, 186 (1): 484- 492.
doi: 10.1016/j.jss.2013.08.013
23 Zheng G , Nolte LP . Computer-assisted orthopedic surgery: current state and future perspective[J]. Front Surg, 2015, 2, 66.
doi: 10.3389/fsurg.2015.00066
24 Sabeti-Aschraf M , Dorotka R , Goll A , et al. Extracorporeal shock wave therapy in the treatment of calcific tendinitis of the rotator cuff[J]. Am J Sports Med, 2005, 33 (9): 1365- 1368.
doi: 10.1177/0363546504273052
25 Sabeti M , Dorotka R , Goll A , et al. A comparison of two different treatments with navigated extracorporeal shock-wave therapy for calcifying tendinitis-a randomized controlled trial[J]. Wien Klin Wochenschr, 2007, 119 (3-4): 124- 128.
doi: 10.1007/s00508-006-0723-x
26 Hagelauer U , Russo S , Gigliotti S , et al. Interactive navigation system for shock wave applications[J]. Comput Aided Surg, 2001, 6 (1): 22- 31.
doi: 10.3109/10929080109145990
27 Farr S , Sevelda F , Mader P , et al. Extracorporeal shockwave therapy in calcifying tendinitis of the shoulder[J]. Randomized Controlled Trial Knee Surg Sports Traumatol Arthrosc, 2011, 19 (12): 2085- 2089.
doi: 10.1007/s00167-011-1479-z
28 He W , Guo A , Wang S , et al. Should nonunion femoral neck fractures in children be treated with extracorporeal shockwave therapy under navigation guidance?[J]. Interdisciplinary Neurosurgery, 2020, 20, 100629.
doi: 10.1016/j.inat.2020.100629
29 Notarnicola A , Maccagnano G , Tafuri S , et al. Prognostic factors of extracorporeal shock wave therapy for tendinopathies[J]. Musculoskelet Surg, 2016, 100 (1): 53- 61.
doi: 10.1007/s12306-015-0375-y
30 Salem H , Soria D , Lund JN , et al. A systematic review of the applications of expert systems (ES) and machine learning (ML) in clinical urology[J]. BMC Med Inform Decis Mak, 2021, 21 (1): 223.
doi: 10.1186/s12911-021-01585-9
31 Goyal NK , Kumar A , Trivedi S , et al. A comparative study of artificial neural network and multivariate regression analysis to analyze optimum renal stone fragmentation by extracorporeal shock wave lithotripsy[J]. Saudi J Kidney Dis Transpl, 2010, 21 (6): 1073- 1080.
32 Mannil M , von Spiczak J , Hermanns T , et al. Three-dimensional texture analysis with machine learning provides incremental predictive information for successful shock wave lithotripsy in patients with kidney stones[J]. J Urol, 2018, 200 (4): 829- 836.
doi: 10.1016/j.juro.2018.04.059
33 Xu ZH , Zhou S , Jia CP , et al. Prediction of proximal ureteral stones clearance after shock wave lithotripsy using an artificial neural network[J]. Urol J, 2021, 18 (5): 491- 496.
34 Yang SW , Hyon YK , Na HS , et al. Machine learning prediction of stone-free success in patients with urinary stone after treatment of shock wave lithotripsy[J]. BMC Urol, 2020, 20 (1): 88.
doi: 10.1186/s12894-020-00662-X
35 Michaels EK , Niederberger CS , Golden RM , et al. Use of a neural network to predict stone growth after shock wave lithotripsy[J]. Urology, 1998, 51 (2): 335- 338.
doi: 10.1016/S0090-4295(97)00611-0
36 蒋杰宏, 姚聪, 陈健芬, 等. 人工神经网络及Logistic回归模型对预测体外冲击波治疗上尿路结石的疗效分析[J]. 国际医药卫生导报, 2016, 22 (12): 1670- 1673.
doi: 10.3760/cma.j.issn.1007-1245.2016.12.002
JIANG Jiehong , YAO Cong , CHEN Jianfen , et al. Role of artificial neural network and logistic regression model in predicting effect of extracorporeal shock wave for upper urinary tract calculi[J]. International Medicine and Health Guidance News, 2016, 22 (12): 1670- 1673.
doi: 10.3760/cma.j.issn.1007-1245.2016.12.002
37 Muller S , Abildsnes H , Ostvik A , et al. Can a dinosaur think? Implementation of artificial intelligence in extracorporeal shock wave lithotripsy[J]. Eur Urol Open Sci, 2021, 27, 33- 42.
doi: 10.1016/j.euros.2021.02.007
38 Chen ZP , Zeng DD , Seltzer RGN , et al. Automated generation of personalized shock wave lithotripsy protocols: treatment planning using deep learning[J]. JMIR Med Inform, 2021, 9 (5): e24721.
doi: 10.2196/24721
39 Yin M , Chen N , Huang Q , et al. New and accurate predictive model for the efficacy of extracorporeal shock wave therapy in managing patients with chronic plantar fasciitis[J]. Arch Phys Med Rehabil, 2017, 98 (12): 2371- 2377.
doi: 10.1016/j.apmr.2017.05.016
40 Yin M , Ma J , Xu J , et al. Use of artificial neural networks to identify the predictive factors of extracorporeal shock wave therapy treating patients with chronic plantar fasciitis[J]. Sci Rep, 2019, 9 (1): 4207.
doi: 10.1038/s41598-019s-39026-3
41 Wang ZY, Li CW, Guo AY, et al. Influences of predictive factors on treatment effect of delayed union with radial extracorporeal shock wave therapy[C] // 2022 WRC Symposium on Advanced Robotics and Automation (WRC SARA), 20 August 2022, Beijing: IEEE, 234-239. doi: 10.1109/WRCSARA57040.2022.9903993.
42 Y in , M C , Yan YJ , Tong ZY , et al. Development and validation of a novel scoring system for severity of plantar fasciitis[J]. Orthop Surg, 2020, 12 (6): 1882- 1889.
doi: 10.1111/os.12827
43 刘文勇, 胡蕊燕, 王再跃, 等. 脊柱手术机器人研究进展及趋势分析[J]. 骨科临床与研究杂志, 2020, 5 (3): 185- 189.
44 Pu YR , Manousakas I , Liang SM , et al. Design of the dual stone locating system on an extracorporeal shock wave lithotriptor[J]. Sensors, 2013, 13 (1): 1319- 1328.
doi: 10.3390/s130101319
45 Rassweiler J , Rieker P , Rassweiler-Seyfried MC . Extracorporeal shock-wave lithotripsy: is it still valid in the era of robotic endourology? Can it be more efficient?[J]. Curr Opin Urol, 2020, 30 (2): 120- 129.
doi: 10.1097/MOU.0000000000000732
46 鲁守银, 李臣. 中医按摩机器人关键技术研究进展[J]. 山东建筑大学学报, 2017, 32 (1): 60- 68.
LU Shouyin , LI Chen . Research progress of key technology of Chinese medical massage robot[J]. Journal of Shandong Jianzhu University, 2017, 32 (1): 60- 68.
47 Zhai J , Zeng X , Su Z . An intelligent control system for robot massaging with uncertain skin characteristics[J]. Industrial Robot, 2022, 49 (4): 634- 644.
doi: 10.1108/IR-11-2021-0266
48 魏江艳, 付渊博, 刘璐, 等. 智能针灸机器人的关键技术研究进展[J]. 中华中医药杂志, 2021, 36 (2): 979- 982.
WEI Jiangyan , FU Yuanbo , LIU Lu , et al. Research progress on key technologies of intelligent acupuncture robot[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2021, 36 (2): 979- 982.
49 Xu T , Xia Y . Guidance for acupuncture robot with potentially utilizing medical robotic technologies[J]. Evid Based Complement Alternat Med, 2021, 2021, 8883598.
doi: 10.1155/2021/8883598
50 Nature Research Custom, Beijing Jishuitan Hospital. A pioneer in medical robotics[EB/OL]. (2020-06-24)[2022-07-15]. https://www.nature.com/articles/d42473-020-00259-w.
[1] WU Nan, ZHANG Jianguo, ZHU Yuanpeng, CHEN Guilin, CHEN Zefu. Application of artificial intelligence in the diagnosis and treatment of spinal deformity [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 14-20.
[2] HUANG Lin, CHE Zhen, LI Ming, LI Yuxi, NING Qing. Research advances of artificial intelligence in the diagnosis and treatment of orthopaedic diseases [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 37-45.
[3] JU Yanli, WANG Lihua, CHENG Fang, HUANG Fengyan, CHEN Xueyu, JIA Hongying. Construction of predictive models of radioiodine therapy based on machine learning [J]. Journal of Shandong University (Health Sciences), 2023, 61(1): 94-99.
[4] Li KUANG,Xiaoming XU,Qi ZENG. Review of machine learning used in the field of suicide [J]. Journal of Shandong University (Health Sciences), 2022, 60(4): 10-16.
[5] JIANG Zhen, SUN Jing, ZOU Wen, WANG Changchang, GAO Qi. A comparison study of suicidal behavior predictive models of bipolar disorder patients based on two machine learning algorithms [J]. Journal of Shandong University (Health Sciences), 2022, 60(1): 101-108.
[6] TIAN Yaotian, WANG Bao, LI Yeqin, WANG Teng, TIAN Liwen, HAN Bo, WANG Cuiyan. Machine learning models based on interpretive CMR parameters can predict the prognosis of pediatric myocarditis [J]. Journal of Shandong University (Health Sciences), 2021, 59(7): 43-49.
[7] Wei ZHANG,Wenhao TAN,Yibin LI. Locmotion control of quadruped robot based on deep reinforcement learning: review and prospect [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 61-66.
[8] Qiang WU,Zekun HE,Ju LIU,Xiaomeng CUI,Shuang SUN,Wei SHI. A research on multi-modal MRI analysis based on machine learning for brain glioma [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 81-87.
[9] Haotian LIN,Longhui LI,Jingjing CHEN. Research progress of artificial intelligence in childhood eye diseases [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 11-16.
[10] ZUO Can-hui, WANG Lu-bo, XU Shi-hong, DONG Jin-lei, ZHOU Dong-sheng. Clinical research of atlantoaxial transarticular screw fixation for odontoid
fractures with computer navigation assisted system
[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2012, 50(12): 103-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 1 -6 .
[2] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 15 -23 .
[3] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 38 -46 .
[4] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 67 -71 .
[5] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 7 -14 .
[6] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 24 -31 .
[7] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 47 -52 .
[8] XIAO Juan, XIAO Qiang, CONG Wei, LI Ting, DING Shouluan, ZHANG Yuan, SHAO Chunchun, WU Mei, LIU Jianing, JIA Hongying. Comparison of diagnostic efficacy of two kinds of thyroid imagine reporting and data systems[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 53 -59 .
[9] LYU Longfei, LI Lin, LI Shuhai, QI Lei, LU Ming, CHENG Chuanle, TIAN Hui. Application of laparoscopic fine needle catheter jejunostomy in minimally invasive McKeown resection of esophageal cancer[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 77 -81 .
[10] ZHANG Juan, ZHANG Lujia, XIAO Wei, LI Shunping. Influencing factors of perceived stress and job retention in national standardized training for resident doctors[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 108 -114 .