Journal of Shandong University (Health Sciences) ›› 2023, Vol. 61 ›› Issue (3): 14-20.doi: 10.6040/j.issn.1671-7554.0.2022.0956

• Expert Overview • Previous Articles     Next Articles

Application of artificial intelligence in the diagnosis and treatment of spinal deformity

Nan WU1,2,3,4,*(),Jianguo ZHANG1,2,3,4,Yuanpeng ZHU1,2,4,Guilin CHEN1,2,4,Zefu CHEN1,2,4   

  1. 1. Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
    2. Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
    3. State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing 100730, China
    4. Key Laboratory of Spinal Deformity Research and Application of Big Data, Beijing 100730, China
  • Received:2022-08-10 Online:2023-03-10 Published:2023-03-24
  • Contact: Nan WU E-mail:dr.wunan@pumch.cn

Abstract:

Spinal deformity is a highly teratogenic and disabling disease, whose age of onset covers the entire life cycle. With the rapid development of computer technology, artificial intelligence has made remarkable progress, and has huge application potential in the diagnosis and treatment of diseases, especially in the screening, diagnosis and treatment, surgical decision-making, intraoperative operations and complication prediction of spinal deformities. In the past few years, a large number of researches have explored in the related fields and proposed plentiful well-working and promising projects and models. This paper will review the latest advances.

Key words: Artificial intelligence, Spinal deformity, Scoliosis, Neural network, Machine learning

CLC Number: 

  • R681.5
1 Smith JS , Shaffrey CI , Bess S , et al. Recent and emerging advances in spinal deformity[J]. Neurosurgery, 2017, 80 (3s): S70- S85.
doi: 10.1093/neuros/nyw048
2 Diebo BG , Shah NV , Boachie-Adjei O , et al. Adult spinal deformity[J]. Lancet, 2019, 394 (10193): 160- 172.
doi: 10.1016/S0140-6736(19)31125-0
3 Shakil H , Iqbal ZA , Al-Ghadir AH . Scoliosis: review of types of curves, etiological theories and conservative treatment[J]. J Back Musculoskelet Rehabil, 2014, 27 (2): 111- 115.
doi: 10.3233/BMR-130438
4 Dunn J , Henrikson NB , Morrison CC , et al. Screening for adolescent idiopathic scoliosis: evidence report and systematic review for the US preventive services task force[J]. JAMA, 2018, 319 (2): 173- 187.
doi: 10.1001/jama.2017.11669
5 Weinstein SL , Dolan LA , Cheng JC , et al. Adolescent idiopathic scoliosis[J]. Lancet, 2008, 371 (9623): 1527- 1537.
doi: 10.1016/S0140-6736(08)60658-3
6 Dick S . Artificial Intelligence[J]. Harvard Data Science Review, 2019, 1 (1): 1- 3.
7 Bhinder B , Gilvary C , Madhukar NS , et al. Artificial intelligence in cancer research and precision medicine[J]. Cancer Discov, 2021, 11 (4): 900- 915.
doi: 10.1158/2159-8290.CD-21-0090
8 Schmidt-Erfurth U , Sadeghipour A , Gerendas BS , et al. Artificial intelligence in Retina[J]. Prog Retin Eye Res, 2018, 67, 1- 29.
doi: 10.1016/j.preteyeres
9 Nensa F , Demircioglu A , Rischpler C . Artificial intelligence in nuclear medicine[J]. J Nucl Med, 2019, 60 (Suppl 2): 29- 37.
10 Ramirez L , Durdle NG , Raso VJ , et al. A support vector machines classifier to assess the severity of idiopathic scoliosis from surface topography[J]. IEEE Trans Inf Technol Biomed, 2006, 10 (1): 84- 91.
doi: 10.1109/TITB.2005.855526
11 Watanabe K , Aoki Y , Matsumoto M . An application of artificial intelligence to diagnostic imaging of spine disease: estimating spinal alignment from moiré images[J]. Neurospine, 2019, 16 (4): 697- 702.
doi: 10.14245/ns.1938426.213
12 Yang J , Zhang K , Fan H , et al. Development and validation of deep learning algorithms for scoliosis screening using back images[J]. Commun Biol, 2019, 2, 390.
doi: 10.1038/s42003-019-0635-8
13 Hong A , Jaswal N , Westover L , et al. Surface topography classification trees for assessing severity and monitoring progression in adolescent idiopathic scoliosis[J]. Spine (Phila Pa 1976), 2017, 42 (13): E781- E787.
doi: 10.1097/BRS.0000000000001971
14 Kokabu T , Kanai S , Kawakami N , et al. An algorithm for using deep learning convolutional neural networks with three dimensional depth sensor imaging in scoliosis detection[J]. Spine J, 2021, 21 (6): 980- 987.
doi: 10.1016/j.spinee.2021.01.022
15 Greer H , Gerber S , Niethammer M , et al. Scoliosis screening and monitoring using self contained ultrasound and neural networks[J]. Proc IEEE Int Symp Biomed Imaging, 2018, 2018, 1500- 1503.
doi: 10.1109/isbi.2018.8363857
16 Kim KH , Choi WJ , Sohn MJ . Feature importance analysis for postural deformity detection system using explainable predictive modeling technique[J]. Applied Sciences, 2022, 12 (2): 925- 926.
doi: 10.3390/app12020925
17 LeCun Y , Bengio Y , Hinton G . Deep learning[J]. Nature, 2015, 521 (7553): 436- 444.
doi: 10.1038/nature14539
18 Sarvamangala DR , Kulkarni RV . Convolutional neural networks in medical image understanding: a survey[J]. Evol Intell, 2022, 15 (1): 1- 22.
doi: 10.1007/s12065-020-00540-3
19 Duong L , Cheriet F , Labelle H . Automatic detection of scoliotic curves in posteroanterior radiographs[J]. IEEE Trans Biomed Eng, 2010, 57 (5): 1143- 1151.
doi: 10.1109/TBME.2009.2037214
20 Horng MH , Kuok CP , Fu MJ , et al. Cobb angle measurement of spine from X-ray images using convolutional neural network[J]. Comput Math Methods Med, 2019, 2019, 6357171.
doi: 10.1155/2019/6357171
21 Weng CH , Wang CL , Huang YJ , et al. Artificial intelligence for automatic measurement of sagittal vertical axis using ResUNet framework[J]. J Clin Med, 2019, 8 (11): E1826.
doi: 10.3390/jcm8111826
22 Wu H , Bailey C , Rasoulinejad P , et al. Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net[J]. Med Image Anal, 2018, 48, 1- 11.
doi: 10.1016/j.media.2018.05.005
23 Wang L , Xu Q , Leung S , et al. Accurate automated Cobb angles estimation using multi-view extrapolation net[J]. Med Image Anal, 2019, 58, 101542.
doi: 10.1016/j.media.2019.101542
24 Cina A , Bassani T , Panico M , et al. 2-step deep learning model for landmarks localization in spine radiographs[J]. Sci Rep, 2021, 11 (1): 9482.
doi: 10.1038/s41598-021-89102-w
25 Zhang K , Xu N , Guo C , et al. MPF-net: an effective framework for automated Cobb angle estimation[J]. Med Image Anal, 2022, 75, 102277.
doi: 10.1016/j.media.2021.102277
26 Zhang T , Li Y , Cheung JPY , et al. Learning-based coronal spine alignment prediction using smartphone-acquired scoliosis radiograph images[J]. IEEE Access, 2021, 9, 38287- 38295.
doi: 10.1109/ACCESS.2021.3061090
27 Meng N , Cheung JPY , Wong KK , et al. An artificial intelligence powered platform for auto-analyses of spine alignment irrespective of image quality with prospective validation[J]. E Clinical Medicine, 2022, 43, 101252.
doi: 10.1016/j.eclinm.2021.101252
28 Gajny L , Ebrahimi S , Vergari C , et al. Quasi-automatic 3D reconstruction of the full spine from low-dose biplanar X-rays based on statistical inferences and image analysis[J]. Eur Spine J, 2019, 28 (4): 658- 664.
doi: 10.1007/s00586-018-5807-6
29 Aubert B , Vazquez C , Cresson T , et al. Toward automated 3D spine reconstruction from biplanar radiographs using CNN for statistical spine model fitting[J]. IEEE Trans Med Imaging, 2019, 38 (12): 2796- 2806.
doi: 10.1109/TMI.2019.2914400
30 Lenke LG , Betz RR , Harms J , et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis[J]. J Bone Joint Surg Am, 2001, 83 (8): 1169- 1181.
doi: 10.2106/00004623-200108000-00006
31 Zhuang Q , Qiu G , Li Q , et al. Modified PUMC classification for adolescent idiopathic scoliosis[J]. Spine J, 2019, 19 (9): 1518- 1528.
doi: 10.1016/j.spinee.2019.03.008
32 Phan P , Mezghani N , Nault ML , et al. A decision tree can increase accuracy when assessing curve types according to Lenke classification of adolescent idiopathic scoliosis[J]. Spine (Phila Pa 1976), 2010, 35 (10): 1054- 1059.
doi: 10.1097/BRS.0b013e3181bf280e
33 Stokes IA , Sangole AP , Aubin CE . Classification of scoliosis deformity three-dimensional spinal shape by cluster analysis[J]. Spine (Phila Pa 1976), 2009, 34 (6): 584- 590.
doi: 10.1097/BRS.0b013e318190b914
34 Thong W , Parent S , Wu J , et al. Three-dimensional morphology study of surgical adolescent idiopathic scoliosis patient from encoded geometric models[J]. Eur Spine J, 2016, 25 (10): 3104- 3113.
doi: 10.1007/s00586-016-4426-3
35 Pasha S , Hassanzadeh P , Ecker M , et al. A hierarchical classification of adolescent idiopathic scoliosis: identifying the distinguishing features in 3D spinal deformities[J]. PLoS One, 2019, 14 (3): e0213406.
doi: 10.1371/journal.pone.0213406
36 He Z , Wang Y , Qin X , et al. Classification of neurofibromatosis-related dystrophic or nondystrophic scoliosis based on image features using Bilateral CNN[J]. Med Phys, 2021, 48 (4): 1571- 1583.
doi: 10.1002/mp.14719
37 Mezghani N , Phan P , Mitiche A , et al. A Kohonen neural network description of scoliosis fused regions and their corresponding Lenke classification[J]. Int J Comput Assist Radiol Surg, 2012, 7 (2): 257- 264.
doi: 10.1007/s11548-011-0667-0
38 Lafage R , Ang B , Alshabab BS , et al. Predictive model for selection of upper treated vertebra using a machine learning approach[J]. World Neurosurg, 2021, 146, e225- e232.
doi: 10.1016/j.wneu
39 Ames CP , Smith JS , Pellisé F , et al. Artificial intelligence based hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification scheme that predicts quality and value[J]. Spine (Phila Pa 1976), 2019, 44 (13): 915- 926.
doi: 10.1097/BRS.0000000000002974
40 Raman T , Vasquez-Montes D , Varlotta C , et al. Decision tree-based modelling for identification of predictors of blood loss and transfusion requirement after adult spinal deformity surgery[J]. Int J Spine Surg, 2020, 14 (1): 87- 95.
doi: 10.14444/7012
41 Pasha S , Flynn J . Data-driven classification of the 3D spinal curve in adolescent idiopathic scoliosis with an application in surgical outcome prediction[J]. Sci Rep, 2018, 8 (1): 16296.
doi: 10.1038/s41598-018-34261-6
42 Guo XY, Xu SX, Wang YZ, et al. Prediction model of scoliosis progression bases on deep learning[C]//Cyberspace Data Intell Cyber Living Syndr Heal. Singapore: Springer, 2019: 431-440. doi: 10.1007/978-981-15-1925-3_31.
43 García-Cano E , Arámbula Cosío F , Duong L , et al. Prediction of spinal curve progression in Adolescent Idiopathic Scoliosis using Random Forest regression[J]. Comput Biol Med, 2018, 103, 34- 43.
doi: 10.1016/j.compbiomed.2018.09.029
44 Pellisé F , Vila-Casademunt A , Núñez-Pereira S , et al. Surgeons' risk perception in ASD surgery: the value of objective risk assessment on decision making and patient counselling[J]. Eur Spine J, 2022, 31 (5): 1174- 1183.
doi: 10.1007/s00586-022-07166-2
45 Kantelhardt SR , Martinez R , Baerwinkel S , et al. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement[J]. Eur Spine J, 2011, 20 (6): 860- 868.
doi: 10.1007/s00586-011-1729-2
46 Gao S , Lv Z , Fang H . Robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis of randomized controlled trials[J]. Eur Spine J, 2018, 27 (4): 921- 930.
doi: 10.1007/s00586-017-5333-y
47 Peng YN , Tsai LC , Hsu HC , et al. Accuracy of robot-assisted versus conventional freehand pedicle screw placement in spine surgery: a systematic review and meta-analysis of randomized controlled trials[J]. Ann Transl Med, 2020, 8 (13): 824.
doi: 10.21037/atm-20-1106
48 Lieberman IH , Kisinde S , Hesselbacher S . Robotic-assisted pedicle screw placement during spine surgery[J]. JBJS Essent Surg Tech, 2020, 10 (2): e0020.
doi: 10.2106/JBJS.ST.19.00020
49 Esfandiari H , Newell R , Anglin C , et al. A deep learning framework for segmentation and pose estimation of pedicle screw implants based on C-arm fluoroscopy[J]. Int J Comput Assist Radiol Surg, 2018, 13 (8): 1269- 1282.
doi: 10.1007/s11548-018-1776-9
50 Guiot BH , Khoo LT , Fessler RG . A minimally invasive technique for decompression of the lumbar spine[J]. Spine (Phila Pa 1976), 2002, 27 (4): 432- 438.
doi: 10.1097/00007632-200202150-00021
51 Liu G , Liu S , Zuo YZ , et al. Recent advances in technique and clinical outcomes of minimally invasive spine surgery in adult scoliosis[J]. Chin Med J (Engl), 2017, 130 (21): 2608- 2615.
doi: 10.4103/0366-6999.212688
52 Shamji MF , Goldstein CL , Wang M , et al. Minimally invasive spinal surgery in the elderly: does it make sense?[J]. Neurosurgery, 2015, 77 (Suppl 4): S108- S115.
53 de Bodman C , Ansorge A , Tabard A , et al. Clinical and radiological outcomes of minimally-invasive surgery for adolescent idiopathic scoliosis at a minimum two years' follow-up[J]. Bone Joint J, 2020, 102-B (4): 506- 512.
doi: 10.1302/0301-620X.102B4.BJJ-2019-0447.R1
54 von Atzigen M , Liebmann F , Hoch A , et al. HoloYolo: a proof-of-concept study for marker-less surgical navigation of spinal rod implants with augmented reality and on-device machine learning[J]. Int J Med Robot, 2021, 17 (1): 1- 10.
55 Luthi M , Gerig T , Jud C , et al. Gaussian process morphable models[J]. IEEE Trans Pattern Anal Mach Intell, 2018, 40 (8): 1860- 1873.
doi: 10.1109/TPAMI.2017.2739743
56 Scheer JK , Osorio JA , Smith JS , et al. Development of validated computer-based preoperative predictive model for proximal junction failure (PJF) or clinically significant PJK with 86% accuracy based on 510 ASD patients with 2-year follow-up[J]. Spine (Phila Pa 1976), 2016, 41 (22): E1328- E1335.
doi: 10.1097/BRS.0000000000001598
57 Peng L , Lan L , Xiu P , et al. Prediction of proximal junctional kyphosis after posterior scoliosis surgery with machine learning in the lenke 5 adolescent idiopathic scoliosis patient[J]. Front Bioeng Biotechnol, 2020, 8, 559387.
doi: 10.3389/fbioe.2020.559387
58 Yagi M , Fujita N , Okada E , et al. Fine-tuning the predictive model for proximal junctional failure in surgically treated patients with adult spinal deformity[J]. Spine (Phila Pa 1976), 2018, 43 (11): 767- 773.
doi: 10.1097/BRS.0000000000002415
59 Yagi M , Hosogane N , Fujita N , et al. The patient demographics, radiographic index and surgical invasiveness for mechanical failure (PRISM) model established for adult spinal deformity surgery[J]. Sci Rep, 2020, 10 (1): 9341.
doi: 10.1038/s41598-020-66353-7
60 Kim JS , Merrill RK , Arvind V , et al. Examining the ability of artificial neural networks machine learning models to accurately predict complications following posterior lumbar spine fusion[J]. Spine (Phila Pa 1976), 2018, 43 (12): 853- 860.
doi: 10.1097/BRS.0000000000002442
61 Karhade AV , Schwab JH , Del Fiol G , et al. SMART on FHIR in spine: integrating clinical prediction models into electronic health records for precision medicine at the point of care[J]. Spine J, 2020, 21 (10): 1649- 1651.
62 Park JH , Stegall PR , Roye DP , et al. Robotic spine exoskeleton (RoSE): characterizing the 3-D stiffness of the human torso in the treatment of spine deformity[J]. IEEE Trans Neural Syst Rehabil Eng, 2018, 26 (5): 1026- 1035.
doi: 10.1109/TNSRE.2018.2821652
[1] WANG Shao-Qing, LIU Yi-Hui, FU Ting-Ting, CHENG Jin-Yong, LIU Qiang. Classification of 31P MRS data for hepatocellular carcinoma [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2209, 47(6): 42-46.
[2] LIU Xinyu, LI Donglai, ZHAO Wenlong, WANG Zheng, LI Chao, WANG Lianlei, YUAN Suomao, TIAN Yonghao. Robotics/navigation-assisted pedicle screw implantation in spinal deformity correction surgery [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 21-28.
[3] WANG Hui, WANG Lianlei, WU Tianchi, TIAN Yonghao, YUAN Suomao, WANG Xia, LYU Weijia, LIU Xinyu. Artificial intelligence-assisted 3D printing of surgical guides for pedicle screw Insertion in scoliosis surgeries [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 127-133.
[4] LI Chao, SUN Xiaogang, LI Hao, TIAN Yonghao, YUAN Suomao, LIU Xinyu, WANG Lianlei. Clinical application of robotic-assisted navigation based on 3D C-arm in 44 cases of scoliosis surgery [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 107-114.
[5] HUANG Lin, CHE Zhen, LI Ming, LI Yuxi, NING Qing. Research advances of artificial intelligence in the diagnosis and treatment of orthopaedic diseases [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 37-45.
[6] Yajun LIU,Zhao LANG,Anyi GUO,Wenyong LIU. Progresses and trends of intelligent technologies in orthopedic shock wave therapy [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 7-13.
[7] Shiqing FENG. Computer vision and lumbar degenerative disease [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 1-6.
[8] JU Yanli, WANG Lihua, CHENG Fang, HUANG Fengyan, CHEN Xueyu, JIA Hongying. Construction of predictive models of radioiodine therapy based on machine learning [J]. Journal of Shandong University (Health Sciences), 2023, 61(1): 94-99.
[9] Li KUANG,Xiaoming XU,Qi ZENG. Review of machine learning used in the field of suicide [J]. Journal of Shandong University (Health Sciences), 2022, 60(4): 10-16.
[10] FENG Yiping, SUN Dapeng, WANG Xianjun, JI Yiman, LIU Yunxia. Comparison of prediction effects of DLNM and LSTM neural network on the incidence of hand, foot and mouth disease in Linyi City [J]. Journal of Shandong University (Health Sciences), 2022, 60(2): 96-101.
[11] JIANG Zhen, SUN Jing, ZOU Wen, WANG Changchang, GAO Qi. A comparison study of suicidal behavior predictive models of bipolar disorder patients based on two machine learning algorithms [J]. Journal of Shandong University (Health Sciences), 2022, 60(1): 101-108.
[12] WANG Linlin, SUN Yuping. From the perspective of clinicians: the application and reflection of artificial intelligence in cancer precision diagnosis and treatment [J]. Journal of Shandong University (Health Sciences), 2021, 59(9): 89-96.
[13] TIAN Yaotian, WANG Bao, LI Yeqin, WANG Teng, TIAN Liwen, HAN Bo, WANG Cuiyan. Machine learning models based on interpretive CMR parameters can predict the prognosis of pediatric myocarditis [J]. Journal of Shandong University (Health Sciences), 2021, 59(7): 43-49.
[14] Xingang LI,Xin ZHANG,Anjing CHEN. The latest advances in human brain projects [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 5-9, 21.
[15] Qiang WU,Zekun HE,Ju LIU,Xiaomeng CUI,Shuang SUN,Wei SHI. A research on multi-modal MRI analysis based on machine learning for brain glioma [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 81-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 1 -6 .
[2] MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui. Effect of miR-27b-3p regulating SMAD1 on osteosarcoma cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 32 -37 .
[3] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 15 -23 .
[4] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 38 -46 .
[5] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 67 -71 .
[6] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 7 -14 .
[7] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 24 -31 .
[8] DING Xiangyun, YU Qingmei, ZHANG Wenfang, ZHUANG Yuan, HAO Jing. Correlation of the expression of insulin-like growth factor II in granulosa cells and ovulation induction outcomes of 84 patients with polycystic ovary syndrome[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 60 -66 .
[9] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 47 -52 .
[10] XIAO Juan, XIAO Qiang, CONG Wei, LI Ting, DING Shouluan, ZHANG Yuan, SHAO Chunchun, WU Mei, LIU Jianing, JIA Hongying. Comparison of diagnostic efficacy of two kinds of thyroid imagine reporting and data systems[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 53 -59 .