Journal of Shandong University (Health Sciences) ›› 2023, Vol. 61 ›› Issue (3): 21-28.doi: 10.6040/j.issn.1671-7554.0.2022.1125

• Expert Overview • Previous Articles     Next Articles

Robotics/navigation-assisted pedicle screw implantation in spinal deformity correction surgery

Xinyu LIU1,*(),Donglai LI1,Wenlong ZHAO2,Zheng WANG1,Chao LI1,Lianlei WANG1,Suomao YUAN1,Yonghao TIAN1   

  1. 1. Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
    2. Department of Orthopedics, The Third Hospital of Jinan, Jinan 250132, Shandong, China
  • Received:2022-09-30 Online:2023-03-10 Published:2023-03-24
  • Contact: Xinyu LIU E-mail:newyuliu@163.com

Abstract:

Surgical robotics and navigation systems are the results of technological advances that start a new approach for accurate insertion of the pedicle screw in spine surgery. The anatomical complexity of the spinal region and its proximity to many important blood vessels and nerves, spinal deformities such as vertebral body rotation and variation, narrow pedicle, kyphosis and scoliosis place higher demands on the accuracy of spine surgery. Free-hand placement of pedicle screws relies heavily on operators' experience and intraoperative judgment, but does not allow surgeons to monitor the process of insertion. As a result, the misplacement rate is high. The robotic and navigation systems can provide real-time, three-dimensional images during the operation. Thus, they can assist surgeons in adjusting screws promptly, improving the safety and accuracy of the operation and reducing surgical incision and radiation exposure. However, the expensive equipment costs, long learning curve and high radiation exposure for patients cannot be ignored. Despite the lack of research on long-term outcomes and the uncertainty of intraoperative radiation exposure, robotic and navigation systems have influenced the development of spinal deformity correction surgery.

Key words: Surgery robotics, Navigation, Spinal deformity, Radiation exposure, Accuracy of pedicle screw

CLC Number: 

  • R687.1
1 Bann S , Khan M , Hernandez J , et al. Robotics in surgery[J]. Am Coll Surg, 2003, 196 (5): 784- 795.
doi: 10.1016/S1072-7515(02)01750-7
2 Ahern DP , Gibbons D , Schroeder GD , et al. Image-guidance, robotics, and the future of spine surgery[J]. Clin Spine Surg, 2020, 33 (5): 179- 184.
3 Kochanski RB , Lombardi JM , Laratta JL , et al. Image-guided navigation and robotics in spine surgery[J]. Neurosurgery, 2019, 84 (6): 1179- 1189.
doi: 10.1093/neuros/nyy630
4 Devito DP , Woo R . History and evolution of spinal robotics in pediatric spinal deformity[J]. Int J Spine Surg, 2021, 15 (s2): S65- S73.
doi: 10.14444/8141
5 Ughwanogho E , Patel NM , Baldwin KD , et al. Computed tomography-guided navigation of thoracic pedicle screws for adolescent idiopathic scoliosis results in more accurate placement and less screw removal[J]. Spine (Phila Pa 1976), 2012, 37 (8): E473- E478.
doi: 10.1097/BRS.0b013e318238bbd9
6 Sakai Y , Matsuyama Y , Yoshihara H , et al. Simultaneous registration with ct-fluoro matching for spinal navigation surgery. A case report[J]. Nagoya J Med Sci, 2006, 68 (1-2): 45- 52.
7 Macke JJ , Woo R , Varich L . Accuracy of robot-assisted pedicle screw placement for adolescent idiopathic scoliosis in the pediatric population[J]. J Robot Surg, 2016, 10 (2): 145- 150.
doi: 10.1007/s11701-016-0587-7
8 施新革, 张永刚, 张雪松, 等. 术中CT导航在脊柱侧凸后路胸椎椎弓根螺钉植入术中的应用[J]. 中国修复重建外科杂志, 2012, 26 (12): 1415- 1419.
SHI Xinge , ZHANG Yonggang , ZHANG Xuesong , et al. Application of intraoperative CT navigation in osterior thoracic pedicle screw placement for scoliosis patients[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2012, 26 (12): 1415- 1419.
9 Sato T , Yonezawa I , Akimoto T , et al. Novel hump measurement system with a 3D camera for early diagnosis of patients with adolescent idiopathic scoliosis: a study of accuracy and reliability[J]. Cureus, 2020, 12 (5): e8229.
doi: 10.7759/cureus.8229
10 Kotani Y , Abumi K , Ito M , et al. Accuracy analysis of pedicle screw placement in posterior scoliosis surgery: comparison between conventional fluoroscopic and computer-assisted technique[J]. Spine (Phila Pa 1976), 2007, 32 (14): 1543- 1550.
doi: 10.1097/BRS.0b013e318068661e
11 Liljenqvist UR , Halm HF , Link TM . Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis[J]. Spine (Phila Pa 1976), 1997, 22 (19): 2239- 2245.
doi: 10.1097/00007632-199710010-00008
12 Smith RM , Pool RD , Butt WP , et al. The transverse plane deformity of structural scoliosis[J]. Spine (Phila Pa 1976), 1991, 16 (9): 1126- 1129.
doi: 10.1097/00007632-199109000-00020
13 Lonstein JE , Denis F , Perra JH , et al. Complications associated with pedicle screws[J]. J Bone Joint Surg Am, 1999, 81 (11): 1519- 1528.
doi: 10.2106/00004623-199911000-00003
14 Kwan MK , Chiu CK , Gani SMA , et al. Accuracy and safety of pedicle screw placement in adolescent idiopathic scoliosis patients: a review of 2020 screws using computed tomography assessment[J]. Spine (Phila Pa 1976), 2017, 42 (5): 326- 335.
doi: 10.1097/BRS.0000000000001738
15 Waschke A , Walter J , Duenisch P , et al. CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4, 500 screws[J]. Eur Spine J, 2013, 22 (3): 654- 660.
doi: 10.1007/s00586-012-2509-3
16 Chan A , Parent E , Wong J , et al. Does image guidance decrease pedicle screw-related complications in surgical treatment of adolescent idiopathic scoliosis: a systematic review update and meta-analysis[J]. Eur Spine J, 2020, 29 (4): 694- 716.
doi: 10.1007/s00586-019-06219-3
17 Shin JH , Yanamadala V , Cha TD . Computer-assisted navigation for real time planning of redicle subtraction osteotomy in cervico-thoracic deformity correction[J]. Oper Neurosurg (Hagerstown), 2019, 16 (4): 445- 450.
doi: 10.1093/ons/opy162
18 Overley SC , Cho SK , Mehta AI , et al. Navigation and robotics in spinal surgery: where are we now?[J]. Neurosurgery, 2017, 80 (3S): S86- S99.
doi: 10.1093/neuros/nyw077
19 Ryang Y-M , Villard J , Obermüller T , et al. Learning curve of 3D fluoroscopy image-guided pedicle screw placement in the thoracolumbar spine[J]. Spine J, 2015, 15 (3): 467- 476.
doi: 10.1016/j.spinee.2014.10.003
20 Berlin C , Quante M , Thomsen B , et al. Intraoperative radiation exposure for patients with double-curve idiopathic scoliosis in freehand-technique in comparison to fluoroscopic- and CT-based navigation[J]. Z Orthop Unfall, 2021, 159 (4): 412- 420.
doi: 10.1055/a-1121-8033
21 Simony A , Hansen EJ , Christensen SB , et al. Incidence of cancer in adolescent idiopathic scoliosis patients treated 25 years previously[J]. Eur Spine J, 2016, 25 (10): 3366- 3370.
doi: 10.1007/s00586-016-4747-2
22 Costa F , Tosi G , Attuati L , et al. Radiation exposure in spine surgery using an image-guided system based on intraoperative cone-beam computed tomography: analysis of 107 consecutive cases[J]. J Neurosurg Spine, 2016, 25 (5): 654- 659.
doi: 10.3171/2016.3.SPINE151139
23 Rajasekaran S , Bhushan M , Aiyer S , et al. Accuracy of pedicle screw insertion by AIRO intraoperative CT in complex spinal deformity assessed by a new classification based on technical complexity of screw insertion[J]. Eur Spine J, 2018, 27 (9): 2339- 2347.
doi: 10.1007/s00586-017-5453-4
24 Metz LN , Burch S . Computer-assisted surgical planning and image-guided surgical navigation in refractory adult scoliosis surgery: case report and review of the literature[J]. Spine (Phila Pa 1976), 2008, 33 (9): E287- E292.
doi: 10.1097/BRS.0b013e31816d256e
25 Zhang W , Takigawa T , Wu Y , et al. Accuracy of pedicle screw insertion in posterior scoliosis surgery: a comparison between intraoperative navigation and preoperative navigation techniques[J]. Eur Spine J, 2017, 26 (6): 1756- 1764.
doi: 10.1007/s00586-016-4930-5
26 Dabaghi Richerand A , Christodoulou E , Li Y , et al. Comparison of effective dose of radiation during pedicle screw placement using intraoperative computed tomography navigation versus fluoroscopy in children with spinal deformities[J]. J Pediatr Orthop, 2016, 36 (5): 530- 533.
doi: 10.1097/BPO.0000000000000493
27 Su AW , McIntosh AL , Schueler BA , et al. How does patient radiation exposure compare with low-dose O-arm versus fluoroscopy for pedicle screw placement in idiopathic scoliosis?[J]. J Pediatr Orthop, 2017, 37 (3): 171- 177.
doi: 10.1097/BPO.0000000000000608
28 Sensakovic WF , O'Dell MC , Agha A , et al. CT radiation dose reduction in robot-assisted pediatric spinal surgery[J]. Spine (Phila Pa 1976), 2017, 42 (7): E417- E424.
doi: 10.1097/BRS.0000000000001846
29 Hodges SD , Eck JC , Newton D . Analysis of CT-based navigation system for pedicle screw placement[J]. Orthopedics, 2012, 35 (8): e1221- e1224.
30 Flynn JM , Sakai DS . Improving safety in spinal deformity surgery: advances in navigation and neurologic monitoring[J]. Eur Spine J, 2013, (Suppl 2): S131- S137.
doi: 10.1007/soo586-012-2360-06
31 Urbanski W , Jurasz W , Wolanczyk M , et al. Increased radiation but no benefits in pedicle screw accuracy with navigation versus a freehand technique in scoliosis surgery[J]. Clin Orthop Relat Res, 2018, 476 (5): 1020- 1027.
doi: 10.1007/s11999.0000000000000204
32 Jin M , Liu Z , Qiu Y , et al. Incidence and risk factors for the misplacement of pedicle screws in scoliosis surgery assisted by O-arm navigation-analysis of a large series of one thousand, one hundred and forty five screws[J]. Int Orthop, 2017, 41 (4): 773- 780.
doi: 10.1007/s00264-016-3353-6
33 Bonnier L , Ayadi K , Vasdev A , et al. Three-dimensional reconstruction in routine computerized tomography of the skull and spine. Experience based on 161 cases[J]. J Neuroradiol, 1991, 18 (3): 250- 266.
34 Takahashi J , Ebara S , Hashidate H , et al. Computer-assisted hemivertebral resection for congenital spinal deformity[J]. J Orthop Sci, 2011, 16 (5): 503- 509.
doi: 10.1007/s00776-011-0134-3
35 Resnick DK . Prospective comparison of virtual fluoroscopy to fluoroscopy and plain radiographs for placement of lumbar pedicle screws[J]. J Spinal Disord Tech, 2003, 16 (3): 254- 260.
doi: 10.1097/00024720-200306000-00005
36 Devito DP , Kaplan L , Dietl R , et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study[J]. Spine (Phila Pa 1976), 2010, 35 (24): 2109- 2115.
doi: 10.1097/BRS.0b013e3181d323ab
37 陈豪杰, 朱贤友, 董亮, 等. 青少年特发性脊柱侧弯矫形术中机器人辅助置钉的研究[J]. 中国修复重建外科杂志, 2021, 35 (11): 1457- 1462.
CHEN Haojie , ZHU Xianyou , DONG Liang , et al. Study on robot-assisted pedicle screw implantation in adolescent idiopathic scoliosis surgery[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2021, 35 (11): 1457- 1462.
38 Smith AD . Scolisis[J]. J Bone Joint Surg Am, 1958, 40-A (3): 505- 507.
39 O'Brien MF , Lenke LG , Mardjetko S , et al. Pedicle morphology in thoracic adolescent idiopathic scoliosis: is pedicle fixation an anatomically viable technique?[J]. Spine (Phila Pa 1976), 2000, 25 (18): 2285- 2293.
doi: 10.1097/00007632-200009150-00005
40 Kotwicki T , Napiontek M . Intravertebral deformation in idiopathic scoliosis: a transverse plane computer tomographic study[J]. J Pediatr Orthop, 2008, 28 (2): 225- 229.
doi: 10.1097/BPO.0b013e3181647c4a
41 Liljenqvist U , Lepsien U , Hackenberg L , et al. Comparative analysis of pedicle screw and hook instrumentation in posterior correction and fusion of idiopathic thoracic scoliosis[J]. Eur Spine J, 2002, 11 (4): 336- 343.
doi: 10.1007/s00586-002-0415-9
42 Baldwin KD , Kadiyala M , Talwar D , et al. Does intraoperative CT navigation increase the accuracy of pedicle screw placement in pediatric spinal deformity surgery? A systematic review and meta-analysis[J]. Spine Deform, 2022, 10 (1): 19- 29.
doi: 10.1007/s43390-021-00385-5
43 Rafi S , Munshi N , Abbas A , et al. Comparative analysis of pedicle screw versus hybrid instrumentation in adolescent idiopathic scoliosis surgery[J]. J Neurosci Rural Pract, 2016, 7 (4): 550- 553.
doi: 10.4103/0976-3147.185510
44 Cheung KMC , Natarajan D , Samartzis D , et al. Predictability of the fulcrum bending radiograph in scoliosis correction with alternate-level pedicle screw fixation[J]. J Bone Joint Surg Am, 2010, 92 (1): 169- 176.
doi: 10.2106/JBJS.H.01831
45 Zhang Q , Xu YF , Tian W , et al. comparison of superior-level facet joint violations between robot-assisted percutaneous pedicle screw placement and conventional open fluoroscopic-guided pedicle screw placement[J]. Orthop Surg, 2019, 11 (5): 850- 856.
doi: 10.1111/os.12534
46 Park Y , Ha JW , Lee YT , et al. Cranial facet joint violations by percutaneously placed pedicle screws adjacent to a minimally invasive lumbar spinal fusion[J]. Spine J, 2011, 11 (4): 295- 302.
doi: 10.1016/j.spinee.2011.02.007
47 Park P , Garton HJ , Gala VC , et al. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature[J]. Spine (Phila Pa 1976), 2004, 29 (17): 1938- 1944.
doi: 10.1097/01.brs.0000137069.88904.03
48 Misenhimer GR , Peek RD , Wiltse LL , et al. Anatomic analysis of pedicle cortical and cancellous diameter as related to screw size[J]. Spine (Phila Pa 1976), 1989, 14 (4): 367- 372.
doi: 10.1097/00007632-198904000-00004
49 Sjöström L , Jacobsson O , Karlström G , et al. CT analysis of pedicles and screw tracts after implant removal in thoracolumbar fractures[J]. J Spinal Disord, 1993, 6 (3): 225- 231.
doi: 10.1097/00002517-199306030-00007
50 Jin M , Liu Z , Liu X , et al. Does intraoperative navigation improve the accuracy of pedicle screw placement in the apical region of dystrophic scoliosis secondary to neurofibromatosis type I: comparison between O-arm navigation and free-hand technique[J]. Eur Spine J, 2016, 25 (6): 1729- 1737.
doi: 10.1007/s00586-015-4012-0
51 Wang M , Steele Ⅲ WJ , Urakov T . Advanced robotic spine surgery: a case-based approach (1st ed.)[J]. Boca Raton: CRC Press, 2021, 145- 158.
52 Kudo H , Wada K , Kumagai G , et al. Accuracy of pedicle screw placement by fluoroscopy, a three-dimensional printed model, local electrical conductivity measurement device, and intraoperative computed tomography navigation in scoliosis patients[J]. Eur J Orthop Surg Traumatol, 2021, 31 (3): 563- 569.
doi: 10.1007/s00590-020-02803-2
53 Lee M-H , Lin MH-C , Weng H-H , et al. Feasibility of intra-operative computed tomography navigation system for pedicle screw insertion of the thoraco-lumbar spine[J]. J Spinal Disord Tech, 2013, 26 (5): E183- E187.
doi: 10.1097/BSD.0b013e31828054c8
54 Nakanishi K , Tanaka M , Misawa H , et al. Usefulness of a navigation system in surgery for scoliosis: segmental pedicle screw fixation in the treatment[J]. Arch Orthop Trauma Surg, 2009, 129 (9): 1211- 1218.
doi: 10.1007/s00402-008-0807-3
55 Torii Y , Ueno J , Iinuma M , et al. The learning curve of robotic-assisted pedicle screw placements using the cumulative sum analysis: a study of the first 50 cases at a single center[J]. Spine Surg Relat Res, 2022, 6 (6): 589- 595.
doi: 10.22603/ssrr.2022-0049
56 Zhao Z , Liu Z , Hu Z , et al. Improved accuracy of screw implantation could decrease the incidence of post-operative hydrothorax? O-arm navigation vs. free-hand in thoracic spinal deformity correction surgery[J]. Int Orthop, 2018, 42 (9): 2141- 2146.
doi: 10.1007/s00264-018-3889-8
57 Tanaka M , Fujiwara Y , Uotani K , et al. C-arm-free anterior correction for adolescent idiopathic scoliosis (Lenke type 5C): analysis of early outcomes and complications[J]. World Neurosurg, 2021, 150, e561- e569.
doi: 10.1016/j.wneu.2021.03.060
58 Faraj AA , Webb JK . Early complications of spinal pedicle screw[J]. Eur Spine J, 1997, 6 (5): 324- 326.
doi: 10.1007/BF01142678
59 Pateder DB , Kostuik JP . Lumbar nerve root palsy after adult spinal deformity surgery[J]. Spine (Phila Pa 1976), 2005, 30 (14): 1632- 1636.
doi: 10.1097/01.brs.0000170292.87470.92
60 Gonzalez D , Ghessese S , Cook D , et al. Initial intraoperative experience with robotic-assisted pedicle screw placement with stealth navigation in pediatric spine deformity: an evaluation of the first 40 cases[J]. J Robot Surg, 2021, 15 (5): 687- 693.
doi: 10.1007/s11701-020-01159-3
61 Kim H , Kim HS , Moon ES , et al. Scoliosis imaging: what radiologists should know — erratum[J]. Radiographics, 2015, 35 (4): 1316.
62 Watanabe K , Lenke LG , Matsumoto M , et al. A novel pedicle channel classification describing osseous anatomy: how many thoracic scoliotic pedicles have cancellous channels?[J]. Spine (Phila Pa 1976), 2010, 35 (20): 1836- 1842.
doi: 10.1097/BRS.0b013e3181d3cfde
63 Meng XT , Guan XF , Zhang HL , et al. Computer navigation versus fluoroscopy-guided navigation for thoracic pedicle screw placement: a meta-analysis[J]. Neurosurg Rev, 2016, 39 (3): 385- 391.
doi: 10.1007/s10143-015-0679-2
64 Lee NJ , Zuckerman SL , Buchanan IA , et al. Is there a difference between navigated and non-navigated robot cohorts in robot-assisted spine surgery? A multicenter, propensity-matched analysis of 2, 800 screws and 372 patients[J]. Spine J, 2021, 21 (9): 1504- 1512.
doi: 10.1016/j.spinee.2021.05.015
[1] Nan WU,Jianguo ZHANG,Yuanpeng ZHU,Guilin CHEN,Zefu CHEN. Application of artificial intelligence in the diagnosis and treatment of spinal deformity [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 14-20.
[2] Yajun LIU,Zhao LANG,Anyi GUO,Wenyong LIU. Progresses and trends of intelligent technologies in orthopedic shock wave therapy [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 7-13.
[3] MA Liang, ZHANG Yuankai, JIANG Shuwei. Comparison of portable accelerometer-based navigation versus conventional instrumentation for total knee arthroplasty in 20 patients: the outcomes at early follow-up [J]. Journal of Shandong University (Health Sciences), 2022, 60(6): 75-81.
[4] ZHANG Chunyun, HE Wei, JIANG Bin, WEI Zhaosheng, WANG Zhigang. Safety and efficacy of neuronavigation-guided minimally invasive aspiration for 17 patients of supratentorial intracerebral hemorrhage with hernia [J]. Journal of Shandong University (Health Sciences), 2020, 58(2): 44-48.
[5] JIANG Jianyuan, WANG Hongli. Related classification and selection strategy of degenerative scoliosis [J]. Journal of Shandong University (Health Sciences), 2019, 57(5): 3-6.
[6] LI Bing, FEI Chang, GUO Feng, SUN Aigang, HUAN Linchun, GUO Shouzhong, LIU Yuhai. Microsurgical treatment of brain arteriovenous malformation in cerebral functional areas assisted with electro-magnetic navigation and ultrasound [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2015, 53(4): 80-82.
[7] ZUO Can-hui, WANG Lu-bo, XU Shi-hong, DONG Jin-lei, ZHOU Dong-sheng. Clinical research of atlantoaxial transarticular screw fixation for odontoid
fractures with computer navigation assisted system
[J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2012, 50(12): 103-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui. Effect of miR-27b-3p regulating SMAD1 on osteosarcoma cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 32 -37 .
[2] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 1 -6 .
[3] DING Xiangyun, YU Qingmei, ZHANG Wenfang, ZHUANG Yuan, HAO Jing. Correlation of the expression of insulin-like growth factor II in granulosa cells and ovulation induction outcomes of 84 patients with polycystic ovary syndrome[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 60 -66 .
[4] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 15 -23 .
[5] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 38 -46 .
[6] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 67 -71 .
[7] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 7 -14 .
[8] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 24 -31 .
[9] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 47 -52 .
[10] GUO Zhihua, ZHAO Daqing, XING Yuan, WANG Wei, LIANG Leping, YANG Jing, ZHAO Qianqian. Single-stage end-to-end anastomosis in the management of severe cervical tracheal stenosis[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 72 -76 .