Journal of Shandong University (Health Sciences) ›› 2023, Vol. 61 ›› Issue (3): 1-6.doi: 10.6040/j.issn.1671-7554.0.2022.0902

• Expert Overview •     Next Articles

Computer vision and lumbar degenerative disease

Shiqing FENG1,2,*()   

  1. 1. Department of Spine Surgery, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
    2. Department of Orthopedics, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Received:2022-07-29 Online:2023-03-10 Published:2023-03-24
  • Contact: Shiqing FENG E-mail:sqfeng@tmu.edu.cn

Abstract:

As an important branch of computer science, computer vision has gradually attracted people's attention, benefited by the development of artificial intelligence in recent years. Some classical algorithms have been industrialized in areas such as autonomous driving or security cameras. Medical image analysis is currently considered one of the most likely areas to achieve industrialization and a hotspot in artificial intelligence research. Computer vision research on lumbar degenerative diseases has sprung up with the development of deep learning algorithms lately. We will review the status of computer vision research related to lumbar degenerative disease, which will be helpful for the understanding of the situation and future trend in the topic.

Key words: Computer Vision, Lumbar degenerative diseases, Artificial intelligence, Deep learning, Lumbar disc herniation

CLC Number: 

  • R681.5

Fig.1

An illustration of classification"

Fig.2

An illustration of segmentation"

1 GBD 2016 Disease and Injury Incidence and Prevalence Collaborators . Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390 (10100): 1211- 1259.
doi: 10.1016/s0140-6736(17)32154-2
2 Ma ZS , Wang L , Du GS , et al. What is the work environment of orthopaedic surgeons in China?[J]. Clin Orthop Relat Res, 2014, 472 (11): 3576- 3580.
doi: 10.1007/s11999-014-3859-4
3 McCulloch WS , Pitts W . A logical Calculus of the ideas immanent in nervous activity. 1943[J]. Bull Math Biol, 1990, 52 (1/2): 99- 115.
4 Rosenblatt F . The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychol Rev, 1958, 65 (6): 386- 408.
doi: 10.1037/h0042519
5 Hinton GE , Salakhutdinov RR . Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313 (5786): 504- 507.
doi: 10.1126/science.1127647
6 Newell A , Shaw JC , Simon HA . Elements of a theory of human problem solving[J]. Psychol Rev, 1958, 65 (3): 151- 166.
doi: 10.1037/h0048495
7 LeCun Y , Bottou L , Bengio Y , et al. Gradient-based learning applied to document recognition[J]. Proc IEEE, 1998, 86 (11): 2278- 2323.
doi: 10.1109/5.726791
8 Viola P, Jones M. Fast and robust classification using asymmetric adaboost and a detector cascade[J]. Adv Neural Inf Process Syst, 2001. doi: http://dx.doi.org/.
9 Mbarki W , Bouchouicha M , Frizzi S , et al. Lumbar spine discs classification based on deep convolutional neural networks using axial view MRI[J]. Interdiscip Neurosurg, 2020, 22, 100837.
doi: 10.1016/j.inat.2020.100837
10 Vaughn ML , Cavill SJ , Taylor SJ , et al. Direct explanations for the development and use of a multi-layer perceptron network that classifies low-back-pain patients[J]. Int J Neural Syst, 2001, 11 (4): 335- 347.
doi: 10.1142/S0129065701000801
11 Koompairojn S, Hua KA, Bhadrakom C. Automatic classification system for lumbar spine X-ray images. Computer-Based Medical Systems[C]//19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06). IEEE, 2006: 213-218. doi: 10.1109/CBMS.2006.54.
12 Michopoulou SK , Costaridou L , Panagiotopoulos E , et al. Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine[J]. IEEE Trans Biomed Eng, 2009, 56 (9): 2225- 2231.
doi: 10.1109/TBME.2009.2019765
13 Jaremko JL , Poncet P , Ronsky J , et al. Estimation of spinal deformity in scoliosis from torso surface cross sections[J]. Spine (Phila Pa 1976), 2001, 26 (14): 1583- 1591.
doi: 10.1097/00007632-200107150-00017
14 Lin H . Identification of spinal deformity classification with total curvature analysis and artificial neural network[J]. Conf Proc IEEE Eng Med Biol Soc, 2005, 2005, 6168- 6171.
doi: 10.1109/iembs.2005.1615903
15 Adankon MM , Dansereau J , Labelle H , et al. Non invasive classification system of scoliosis curve types using least-squares support vector machines[J]. Artif Intell Med, 2012, 56 (2): 99- 107.
doi: 10.1016/j.artmed.2012.07.002
16 Ghosh S, Raja'SA, Chaudhary V, et al. Computer-aided diagnosis for lumbar mri using heterogeneous classifiers[C] //2011 IEEE international symposium on biomedical imaging: from nano to macro. IEEE, 2011: 1179-1182. doi: 10.1109/ISBI.2011.5872612.
17 Veronezi CC , de Azevedo Simões PW , Dos Santos RL , et al. Computational analysis based on artificial neural networks for aiding in diagnosing osteoarthritis of the lumbar spine[J]. Rev Bras Ortop, 2011, 46 (2): 195- 199.
doi: 10.1590/S0102-36162011000200014
18 Jamaludin A , Lootus M , Kadir T , et al. Issls prize in bioengineering science 2017: automation of reading of radiological features from magnetic resonance images (MRIS) of the lumbar spine without human intervention is comparable with an expert radiologist[J]. Eur Spine J, 2017, 26 (5): 1374- 1383.
doi: 10.1007/s00586-017-4956-3
19 Won D , Lee HJ , Lee SJ , et al. Spinal Stenosis grading in magnetic resonance imaging using deep convolutional neural networks[J]. Spine (Phila Pa 1976), 2020, 45 (12): 804- 812.
doi: 10.1097/BRS.0000000000003377
20 Niemeyer F , Galbusera F , Tao Y , et al. A deep learning model for the accurate and reliable classification of disc degeneration based on MRI data[J]. Invest Radiol, 2021, 56 (2): 78- 85.
doi: 10.1097/RLI.0000000000000709
21 Romera-Paredes B , Torr PHS . Recurrent instance segmentation[J]. ArXiv Preprint arXiv, 2016, 1511, 08250.
doi: 10.1007/978-3-319-46466-4_19
22 Lessmann N , van Ginneken B , de Jong PA , et al. Iterative fully convolutional neural networks for automatic vertebra segmentation and identification[J]. Med Image Anal, 2019, 53, 142- 155.
doi: 10.1016/j.media.2019.02.005
23 Schmidt S , Kappes J , Bergtholdt M , et al. Spine detection and labeling using a parts-based graphical model[J]. Inf Process Med Imaging, 2007, 20, 122- 133.
doi: 10.1007/978-3-540-73273-0_11
24 Glocker B , Feulner J , Criminisi A , et al. Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans[J]. Med Image Comput Comput Assist Interv, 2012, 15 (pt 3): 590- 598.
25 Glocker B , Zikic D , Konukoglu E , et al. Vertebrae localization in pathological spine CT via dense classification from sparse annotations[J]. Med Image Comput Comput Assist Interv, 2013, 16 (pt 2): 262- 270.
26 Oktay AB , Akgul YS . Localization of the lumbar discs using machine learning and exact probabilistic inference[J]. Med Image Comput Comput Assist Interv, 2011, 14 (pt 3): 158- 165.
27 Chen H, Shen C, Qin J, et al. Automatic Localization and Identification of Vertebrae in Spine CT via a Joint Learning Model with Deep Neural Networks[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Lecture Notes in Computer Science. Berlin: Springer, 2015. https://doi.org/10.1007/978-3-319-24553-9_63.
28 Ben Ayed I , Punithakumar K , Garvin G , et al. Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation[J]. Inf Process Med Imaging, 2011, 22, 221- 232.
doi: 10.1007/978-3-642-22092-0_19
29 Han Z , Wei B , Mercado A , et al. Spine-GAN: semantic segmentation of multiple spinal structures[J]. Med Image Anal, 2018, 50, 23- 35.
doi: 10.1016/j.media.2018.08.005
30 Zhou Y , Liu Y , Chen Q , et al. Automatic lumbar MRI detection and identification based on deep learning[J]. J Digit Imaging, 2019, 32 (3): 513- 520.
doi: 10.1007/s10278-018-0130-7
31 Kim S , Bae WC , Masuda K , et al. Fine-grain segmentation of the intervertebral discs from MR spine images using deep convolutional neural networks: BSU-net[J]. Appl Sci (Basel), 2018, 8 (9): 1656.
doi: 10.3390/app8091656
32 Malinda V , Lee D . Lumbar vertebrae synthetic segmentation in computed tomography images using hybrid deep generative adversarial networks[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020, 1327- 1330.
doi: 10.1109/embc44109.2020.9175791
33 Zheng HD , Sun YL , Kong DW , et al. Deep learning-based high-accuracy quantitation for lumbar intervertebral disc degeneration from MRI[J]. Nat Commun, 2022, 13 (1): 841.
doi: 10.1038/s41467-022-28387-5
34 Madabhushi A , Lee G . Image analysis and machine learning in digital pathology: challenges and opportunities[J]. Med Image Anal, 2016, 33, 170- 175.
doi: 10.1016/j.media.2016.06.037
35 Zhou BL, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization[EB/OL]. [2022-05-21]. 2015: arXiv: 1512.04150. https://arxiv.org/abs/1512.04150.
36 Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[EB/OL]. [2022-05-21]. 2016: arXiv: 1610.02391. https://arxiv.org/abs/1610.02391.
37 Nguyen A, Yosinski J, Clune J. Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks[EB/OL]. [2022-05-21]. https://arxiv.org/abs/1602.03616.
38 Pesapane F , Volonté C , Codari M , et al. Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States[J]. Insights Imaging, 2018, 9 (5): 745- 753.
doi: 10.1007/s13244-018-0645-y
39 刘伶俐, 贺一墨, 刘祥德. 患者对人工智能医疗的认知及信任度调查[J]. 中国医学伦理学, 2019, 32 (8): 986- 990.
LIU Lingli , HE Yimo , LIU Xiangde . Investigation on patients' cognition and trust in artificial intelligence medicine[J]. Chinese Medical Ethics, 2019, 32 (8): 986- 990.
40 Feldman R , Aldana E , Stein K . Artificial Intelligence in the health care space: how we can trust what we cannot know[J]. Stanford Law & Policy Review, 2019, 30 (2): 399- 419.
41 Hajian S, Bonchi F, Castillo C. Algorithmic bias: From discrimination discovery to fairness-aware data mining[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Fracisco, 2016: 2125-2126.
42 Morid MA , Borjali A , Del Fiol G . A scoping review of transfer learning research on medical image analysis using ImageNet[J]. Comput Biol Med, 2021, 128, 104115.
doi: 10.1016/j.compbiomed.2020.104115
[1] WU Nan, ZHANG Jianguo, ZHU Yuanpeng, CHEN Guilin, CHEN Zefu. Application of artificial intelligence in the diagnosis and treatment of spinal deformity [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 14-20.
[2] WANG Hui, WANG Lianlei, WU Tianchi, TIAN Yonghao, YUAN Suomao, WANG Xia, LYU Weijia, LIU Xinyu. Artificial intelligence-assisted 3D printing of surgical guides for pedicle screw Insertion in scoliosis surgeries [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 127-133.
[3] LIU Yajun, YUAN Qiang, WU Jingye, HAN Xiaoguang, LANG Zhao, ZHANG Yong. Preliminary exploration of automatic planning of lumbar pedicle screws based on cone-beam CT in 130 cases [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 80-89.
[4] HUANG Lin, CHE Zhen, LI Ming, LI Yuxi, NING Qing. Research advances of artificial intelligence in the diagnosis and treatment of orthopaedic diseases [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 37-45.
[5] WANG Linlin, SUN Yuping. From the perspective of clinicians: the application and reflection of artificial intelligence in cancer precision diagnosis and treatment [J]. Journal of Shandong University (Health Sciences), 2021, 59(9): 89-96.
[6] Xingang LI,Xin ZHANG,Anjing CHEN. The latest advances in human brain projects [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 5-9, 21.
[7] Ju LIU,Qiang WU,Luyue YU,Fengming LIN. Brain tumor image segmentation based on deep learning techniques [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 42-49, 73.
[8] Jizong ZHAO. Neurosurgery plays a key role in brain science research [J]. Journal of Shandong University (Health Sciences), 2020, 1(8): 1-4.
[9] Haotian LIN,Longhui LI,Jingjing CHEN. Research progress of artificial intelligence in childhood eye diseases [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 11-16.
[10] Mingguang HE,Chi LIU,Zhixi LI. Applying artificial intelligence in ophthalmic real-world practice: opportunities and challenges [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 1-10.
[11] Zongyuan GE,Wanji HE,Lie JU,Xuan YAO,Lin WANG,Yelin HUANG,Zhiwen YANG,Jianhao XIONG,Yining BAO,Ming LI,Bing ZHANG,Xin ZHAO. New developments in ophthalmic AI algorithms [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 17-23.
[12] Yi QU,Huankai ZHANG,Xian SONG,Baorui CHU. Research progress of artificial intelligence diagnosis system in retinal diseases [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 39-44.
[13] Carol Y. Cheung,Anran RAN. Artificial intelligence deep learning in glaucoma imaging: current progress and future prospect [J]. Journal of Shandong University (Health Sciences), 2020, 58(11): 24-32, 38.
[14] GUAN Xiaoming, ZHANG Yiming, FAN Xiaodong. Development and prospect of laparoendoscopic single-site surgery [J]. Journal of Shandong University (Health Sciences), 2019, 57(12): 5-9.
[15] LIU Xiu-hua1, GAO Jie2, YUE Shou-wei1. Influencing factors on the traction plus epidural block for lumbar disc herniation [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2010, 48(9): 113-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui. Effect of miR-27b-3p regulating SMAD1 on osteosarcoma cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 32 -37 .
[2] DING Xiangyun, YU Qingmei, ZHANG Wenfang, ZHUANG Yuan, HAO Jing. Correlation of the expression of insulin-like growth factor II in granulosa cells and ovulation induction outcomes of 84 patients with polycystic ovary syndrome[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 60 -66 .
[3] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 15 -23 .
[4] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 38 -46 .
[5] GUO Zhihua, ZHAO Daqing, XING Yuan, WANG Wei, LIANG Leping, YANG Jing, ZHAO Qianqian. Single-stage end-to-end anastomosis in the management of severe cervical tracheal stenosis[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 72 -76 .
[6] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 1 -6 .
[7] SHI Shuang, LI Juan, MI Qi, WANG Yunshan, DU Lutao, WANG Chuanxin. Construction and application of a miRNAs prognostic risk assessment model of gastric cancer[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 47 -52 .
[8] LUO Xin, HE Bing, NIE Qingsheng, HOU Zhenbo, DONG Jun, LI Yuhua, ZENG Xiangqin, LIU Wei, KONG Demin, CAO Jinfeng. Comparison of the value of mono-exponential mode and diffusion kurtosis imaging mode in grading clear cell renal cell carcinoma using magnetic resonance diffusion-weighted imaging[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 89 -95 .
[9] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 7 -14 .
[10] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 24 -31 .