Journal of Shandong University (Health Sciences) ›› 2023, Vol. 61 ›› Issue (3): 37-45.doi: 10.6040/j.issn.1671-7554.0.2022.1426

• Expert Overview • Previous Articles     Next Articles

Research advances of artificial intelligence in the diagnosis and treatment of orthopaedic diseases

Lin HUANG*(),Zhen CHE,Ming LI,Yuxi LI,Qing NING   

  1. Department of Orthopedic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China
  • Received:2022-12-17 Online:2023-03-10 Published:2023-03-24
  • Contact: Lin HUANG E-mail:huangl5@mail.sysu.edu.cn

Abstract:

Artificial intelligence (AI) is a new technical science, which conducts deep research and development of theories, methods, core technologies, application software and control systems for the simulation, extension and expansion of human brain intelligence. Its professional fields include robotics, image recognition and expert systems, and so on. AI has an important application value in many medical disciplines, especially in orthopedics. It not only improves the working efficiency of imaging doctors and orthopedic surgeons and reduces the workload, but also provides more safe, reliable and powerful clinical technical support for patients, bringing a great promotion to the diagnosis and treatment of orthopedic diseases. This paper reviews the latest research achievements and limitations of AI in orthopedic diseases, aiming to provide literature reference for the deep integration of AI and orthopedics.

Key words: Artificial intelligence, Orthopedics, Imaging, Diagnosis, Treatment

CLC Number: 

  • R681.5
1 Kim EK , Kim HE , Han K , et al. Applying data-driven imaging biomarker in mammography for breast cancer screening: preliminary study[J]. Sci Rep, 2018, 8 (1): 2762.
doi: 10.1038/s41598-018-21215-1
2 Lin L , Dou Q , Jin YM , et al. Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma[J]. Radiology, 2019, 291 (3): 677- 686.
doi: 10.1148/radiol.2019182012
3 Kann BH , Hosny A , Aerts HJWL . Artificial intelligence for clinical oncology[J]. Cancer Cell, 2021, 39 (7): 916- 927.
doi: 10.1016/j.ccell.2021.04.002
4 Lalehzarian SP , Gowd AK , Liu JN . Machine learning in orthopaedic surgery[J]. World J Orthop, 2021, 12 (9): 685- 699.
doi: 10.5312/wjo.v12.i9.685
5 Turkbey B , Haider MA . Deep learning-based artificial intelligence applications in prostate MRI: brief summary[J]. Br J Radiol, 2022, 95 (1131): 20210563.
doi: 10.1259/bjr.20210563
6 Shin HC , Roth HR , Gao M , et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Trans Med Imaging, 2016, 35 (5): 1285- 1298.
doi: 10.1109/TMI.2016.2528162
7 Chen X , Liu Y . A classification method for thoracolumbar vertebral fractures due to basketball sports injury based on deep learning[J]. Comput Math Methods Med, 2022, 8747487.
doi: 10.1155/2022/8747487
8 朱晓龙, 黄婧潇, 邹殿俊, 等. 上颈椎损伤诊断及治疗中应用多层螺旋CT结合人工智能模式的效果分析[J]. 中国临床医生杂志, 2022, 50 (3): 348- 350.
doi: 10.3969/j.issn.2095-8552.2022.03.028
ZHU Xiaolong , HUANG Jingxiao , ZOU Dianjun , et al. Effect analysis of multi-slice spiral CT combined with artificial intelligence mode in diagnosis and treatment of upper cervical spine injury[J]. Chinese Journal for Clinicians, 2022, 50 (3): 348- 350.
doi: 10.3969/j.issn.2095-8552.2022.03.028
9 董浩, 经齐峰, 邱勇刚, 等. 基于深度学习人工智能辅助CT检测肋骨骨折的价值[J]. 浙江临床医学, 2022, 24 (6): 914- 915.
DONG Hao , JING Qifeng , QIU Yonggang , et al. The value of deep learning artificial intelligence assisted CT in detecting rib fractures[J]. Zhejiang Clinical Medical Journal, 2022, 24 (6): 914- 915.
10 徐传冰, 张琪, 赵佳, 等. 人工智能全自动肋骨骨折检测系统诊断效能研究[J]. 电子元器件与信息技术, 2022, 6 (2): 204- 206.
doi: 10.19772/j.cnki.2096-4455.2022.2.078
XU Chuanbing , ZHANG Qi , ZHAO Jia , et al. Study on diagnostic efficiency of artificial intelligence automatic rib fracture detection system[J]. Electronic Component and Information Technology, 2022, 6 (2): 204- 206.
doi: 10.19772/j.cnki.2096-4455.2022.2.078
11 刘想, 谢辉辉, 许玉峰, 等. 人工智能在胸部创伤肋骨骨折CT诊断中应用的初步研究[J]. 上海交通大学学报(医学版), 2021, 41 (7): 920- 925.
LIU Xiang , XIE Huihui , XU Yufeng , et al. Application of artificial intelligence to CT diagnosis of thoracic traumatic rib sites: a preliminary study[J]. Journal of Shanghai Jiao Tong University(Medical Science), 2021, 41 (7): 920- 925.
12 贾春雪, 张彬, 吴润泽, 等. 基于深度学习的人工智能在肋骨骨折检测中的应用价值[J]. 实用放射学杂志, 2020, 36 (11): 1861- 1864.
doi: 10.3969/j.issn.1002-1671.2020.11.039
JIA Chunxue , ZHANG Bin , WU Runze , et al. The value of artificial intelligence based on deep learning in rib fracture detection[J]. Journal of Practical Radiology, 2020, 36 (11): 1861- 1864.
doi: 10.3969/j.issn.1002-1671.2020.11.039
13 Yang J , Zhang K , Fan H , et al. Development and validation of deep learning algorithms for scoliosis screening using back images[J]. Commun Biol, 2019, 2, 390.
doi: 10.1038/s42003-019-0635-8
14 王征, 王岩, 毛克亚, 等. 脊柱数字化重建与快速成型对复杂脊柱畸形矫治的意义[J]. 中国脊柱脊髓杂志, 2006, 16 (3): 212- 214.
WANG Zheng , WANG Yan , MAO Keya , et al. Instructional application of digital spine and rapid prototype in complicated spinal deformity correction[J]. Chinese Journal of Spine and Spinal Cord, 2006, 16 (3): 212- 214.
15 Mathew R , Palatinus S , Padala S , et al. Neural networks for classification of cervical vertebrae maturation: a systematic review[J]. Angle Orthod, 2022, 92 (6): 796- 804.
doi: 10.2319/031022-210.1
16 赵晓阳, 许树林, 潘为领, 等. 公共人工智能平台在膝关节骨性关节炎分期中的应用[J]. 实用临床医药杂志, 2022, 26 (8): 22- 26.
ZHAO Xiaoyang , XU Shulin , PAN Weiling , et al. Application of public artificial intelligence platform in staging of knee osteoarthritis[J]. Journal of Clinical Medicine in Practice, 2022, 26 (8): 22- 26.
17 Brahim A , Jennane R , Riad R , et al. A decision support tool for early detection of knee OsteoArthritis using X-ray imaging and machine learning: data from the OsteoArthritis Initiative[J]. Comput Med Imaging Graph, 2019, 73, 11- 18.
doi: 10.1016/j.compmedimag.2019.01.007
18 Wu Y , Yang R , Jia S , et al. Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping[J]. Biomed Mater Eng, 2014, 24 (6): 3379- 3388.
19 Bien N , Rajpurkar P , Ball RL , et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet[J]. PLoS Med, 2018, 15 (11): e1002699.
doi: 10.1371/journal.pmed.1002699
20 张先龙, 王坤正. 关节外科的未来——数字骨科技术在关节外科的应用[J]. 中华骨科杂志, 2021, 41 (8): 525- 531.
ZHANG Xianlong , WANG Kunzheng . The future of joint surgery: the application of digital orthopaedic technology in joint surgery[J]. Chinese Journal of Orthopaedics, 2021, 41 (8): 525- 531.
21 Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma[J]. Radiology, 2019, 291(3): 677-686.
22 Lalehzarian SP , Gowd AK , Liu JN . Machine learning in orthopaedic surgery[J]. World J Orthop, 2021, 12 (9): 685- 699.
doi: 10.5312/wjo.v12.i9.685
23 Jones RM , Sharma A , Hotchkiss R , et al. Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs[J]. NPJ Digit Med, 2020, 3, 144.
doi: 10.1038/s41746-020-00352-w
24 Liu F , Zhou Z , Samsonov A , et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection[J]. Radiology, 2018, 289 (1): 160- 169.
doi: 10.1148/radiol.2018172986
25 杨辉, 胡凯, 夏建松, 等. 基于仿人类思维的骨科机器人核心架构设计与实现[J]. 中国医疗器械杂志, 2022, 46 (2): 156- 159.
doi: 10.3969/j.issn.1671-7104.2022.02.008
YANG Hui , HU Kai , XIA Jiansong , et al. Core architecture and clinical application of orthopedic robot based on human-like thinking[J]. Chinese Journal of Medical lnstrumentation, 2022, 46 (2): 156- 159.
doi: 10.3969/j.issn.1671-7104.2022.02.008
26 Applying data-driven imaging biomarker in mammography for breast cancer screening: preliminary study[J]. Sci Rep, 2018, 8(1): 2762.
27 Liew C . The future of radiology augmented with Artificial Intelligence: a strategy for success[J]. Eur J Radiol, 2018, 102, 152- 156.
doi: 10.1016/j.ejrad.2018.03.019
28 崔翔, 张里程, 尹鹏滨, 等. 促进骨折康复治疗的人工智能可穿戴装备及控制方法: CN114947893A[P]. 2022-08-30.
29 Baumann F , Becker C , Freigang V , et al. Imaging, post-processing and navigation: surgical applications in pelvic fracture treatment[J]. Injury, 2022, 53 (Suppl 3): S16- S22.
30 张英泽. 智能微创手术的概念及其在创伤骨科中的应用[J]. 中华创伤杂志, 2017, 33 (8): 673- 674.
ZHANG Yingze . Concept of intelligent minimally invasive surgery and its application in traumatic orthopedics[J]. Chinese Journal of Trauma, 2017, 33 (8): 673- 674.
31 万超, 董圣杰, 王诗军, 等. 人工智能辅助手术规划系统在个体化全髋关节假体精准植入中的应用[J]. 骨科, 2022, 13 (3): 204- 211.
WAN Chao , DONG Shengjie , WANG Shijun , et al. Application of artificial intelligence assisted preoperative planning system for individualization and precise implantation of prosthesis in total hip arthroplasty[J]. Orthopaedics, 2022, 13 (3): 204- 211.
32 Abraham VM , Booth G , Geiger P , et al. Machine-learning models predict 30-day mortality, cardiovascular complications, and respiratory complications after aseptic revision total joint arthroplasty[J]. Clin Orthop Relat Res, 2022, 480 (11): 2137- 2145.
doi: 10.1097/CORR.0000000000002276
33 El-Galaly A , Grazal C , Kappel A , et al. Can machine-learning algorithms predict early revision TKA in the Danish knee arthroplasty registry?[J]. Clin Orthop Relat Res, 2020, 478 (9): 2088- 2101.
34 Lang Z , Han X , Fan M , et al. Posterior atlantoaxial internal fixation using Harms technique assisted by 3D-based navigation robot for treatment of atlantoaxial instability[J]. BMC Surg, 2022, 22 (1): 378.
35 Wang L , Li C , Wang Z , et al. Comparison of robot-assisted versus fluoroscopy-assisted minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar spinal diseases: 2-year follow-up[J]. J Robot Surg, 2022,
doi: 10.1007/s11701-022-01442-5
36 王含, 刘亚军, 范明星, 等. 机器人辅助经皮内镜下腰椎间盘切除术的初步疗效报告[J]. 中华骨科杂志, 2022, 42 (2): 84- 92.
WANG Han , LIU Yajun , FAN Mingxing , et al. Clinical outcomes of robot-assisted transforaminal percutaneous endoscopic lumbar discectomy[J]. Chinese Journal of Orthopaedics, 2022, 42 (2): 84- 92.
37 Fan M , Fang Y , Zhang Q , et al. A prospective cohort study of the accuracy and safety of robot-assisted minimally invasive spinal surgery[J]. BMC Surg, 2022, 22 (1): 47.
38 Zhang J , Li W , Hu L , et al. A robotic system for spine surgery positioning and pedicle screw placement[J]. Int J Med Robot, 2021, 17 (4): e2262.
39 Zhang Q , Xu YF , Tian W , et al. Comparison of superior-level facet joint violations between robot-assisted percutaneous pedicle screw placement and conventional open fluoroscopic-guided pedicle screw placement[J]. Orthop Surg, 2019, 11 (5): 850- 856.
40 Molliqaj G , Schatlo B , Alaid A , et al. Accuracy of robot-guided versus freehand fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery[J]. Neurosurg Focus, 2017, 42 (5): E14.
41 Shafi KA , Pompeu YA , Vaishnav AS , et al. Does robot-assisted navigation influence pedicle screw selection and accuracy in minimally invasive spine surgery?[J]. Neurosurg Focus, 2022, 52 (1): E4.
42 Du SY , Dai J , Zhou ZT , et al. Size selection and placement of pedicle screws using robot-assisted versus fluoroscopy-guided techniques for thoracolumbar fractures: possible implications for the screw loosening rate[J]. BMC Surg, 2022, 22 (1): 365.
43 Kim HJ , Jung WI , Chang BS , et al. A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery[J]. Int J Med Robot, 2017, 13 (3): e1779.
44 郎昭, 王祺龙, 何达, 等. 机器人辅助超声磨钻牛脊柱椎体骨磨削参数研究[J]. 中华医学杂志, 2022, 102 (5): 370- 377.
LANG Zhao , WANG Qilong , HE Da , et al. Study on parameters of robot-assisted ultrasonic drilling on bovine vertebral body[J]. National Medical Journal of China, 2022, 102 (5): 370- 377.
45 Schatlo B , Molliqaj G , Cuvinciuc V , et al. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison[J]. J Neurosurg Spine, 2014, 20 (6): 636- 643.
46 Hsieh MK , Liu MY , Chen JK , et al. Use of longer sized screws is a salvage method for broken pedicles in osteoporotic vertebrae[J]. Sci Rep, 2020, 10 (1): 10441.
47 Sielatycki JA , Mitchell K , Leung E , et al. State of the art review of new technologies in spine deformity surgery-robotics and navigation[J]. Spine Deform, 2022, 10 (1): 5- 17.
48 Verma R , Krishan S , Haendlmayer K , et al. Functional outcome of computer-assisted spinal pedicle screw placement: a systematic review and meta-analysis of 23 studies including 5, 992 pedicle screws[J]. Eur Spine J, 2010, 19 (3): 370- 375.
49 Khan A , Meyers JE , Yavorek S , et al. Comparing next-generation robotic technology with 3-dimensional computed tomography navigation technology for the insertion of posterior pedicle screws[J]. World Neurosurg, 2019, 123, e474- e481.
doi: 10.1016/j.wneu.2018.11.190
50 高宇, 翟吉良, 丁大伟, 等. 人工智能在骨科手术机器人中的应用与展望[J]. 中华骨与关节外科杂志, 2022, 15 (2): 155- 160.
GAO Yu , ZHAI Jiliang , DING Dawei , et al. Application and expectation of artificial intelligence in orthopedic surgical robot[J]. Chinese Journal Bone and Joint Surgery, 2022, 15 (2): 155- 160.
51 Wu J , Liu Z , Gou F , et al. BA-GCA net: boundary-aware grid contextual attention net in osteosarcoma MRI image segmentation[J]. Comput Intell Neurosci, 2022, 2022, 3881833.
doi: 10.1155/2022/3881833
52 田伟, 韩晓光, 张琦. 人工智能在骨科中的应用及展望[J]. 中华创伤骨科杂志, 2021, 23 (4): 277- 280.
TIAN Wei , HAN Xiaoguang , ZHANG Qi . Application and prospect of artificial intelligence in orthopedics[J]. Chinese Journal of Orthopaedic Trauma, 2021, 23 (4): 277- 280.
[1] LI Bo-Bo, LI Dao-Tang, LIU Shu-Guang, WANG Xing-Wu. Expression of serum DKK-1 in esophageal cancer [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2209, 47(6): 58-61.
[2] WANG Xin, XING Chun-Yan, YANG Yan-Ping. Serum phosphopyruvate hydratase in diagnosis of invasive Candida albicans infection [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2209, 47(6): 92-94.
[3] LV Yan-Feng, DING Ke, WANG Jian-Xin, YU Hua-Long, BEI Shao-Sheng. Canceration of chronic anal fistula [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2209, 47(6): 55-57.
[4] XU Ping, YU Guo-Fang, LI Xia. Differential diagnosis of Graves′ disease and Hashimoto′s thyroiditis by different types peak systolic velocity of the superior thyroid artery [J]. JOURNAL OF SHANDONG UNIVERSITY (HEALTH SCIENCES), 2209, 47(6): 62-64.
[5] ZHAO Geng, MAI Ruopeng, ZHAO Jingcai, LIU Xinyu. Minimally invasive channel of the lumbar spine surgery for Chinese: anatomical data based on CT imaging measurements [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 90-96.
[6] Nan WU,Jianguo ZHANG,Yuanpeng ZHU,Guilin CHEN,Zefu CHEN. Application of artificial intelligence in the diagnosis and treatment of spinal deformity [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 14-20.
[7] Shiqing FENG. Computer vision and lumbar degenerative disease [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 1-6.
[8] Yajun LIU,Zhao LANG,Anyi GUO,Wenyong LIU. Progresses and trends of intelligent technologies in orthopedic shock wave therapy [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 7-13.
[9] WANG Lei, ZHANG Shuai, LIU Gang, YOU Shengnan, WANG Zhi, ZHU Shan, CHEN Chao, MA Xinlong, YANG Qiang. Comparison of MRI diagnosis of 140 cases of MCs using intelligent network automatic detection and classification methods [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 71-79.
[10] GUO Yongyuan, SUN Houyi, ZHANG Yuankai, YAN Tingbin, LIU Peilai, JIA Yuhua. Learning curve of domestic “Skywalker” robotic-assisted total knee arthroplasty [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 115-120.
[11] WANG Hui, WANG Lianlei, WU Tianchi, TIAN Yonghao, YUAN Suomao, WANG Xia, LYU Weijia, LIU Xinyu. Artificial intelligence-assisted 3D printing of surgical guides for pedicle screw Insertion in scoliosis surgeries [J]. Journal of Shandong University (Health Sciences), 2023, 61(3): 127-133.
[12] ZHANG Yu, DONG Qiwei, SONG Yiming, DU Yifeng, HAN Xiaojuan. Clinical characteristics and misdiagnosis of CSF1R-related leukoencephalopathy [J]. Journal of Shandong University (Health Sciences), 2023, 61(2): 31-35.
[13] YANG Yongqing, ZHAO Peng, WANG Yu, MA Wenjing, TIAN Mimi, CHENG Yani, ZU Lu, LIN Xiangtao. Diagnostic value of extracellular volume fraction in 62 cases of different pathological types of lung cancer [J]. Journal of Shandong University (Health Sciences), 2023, 61(2): 88-94.
[14] MA Chenbang, GAO Pei, CHANG Yao, MAO Changlin, CHEN Feng, ZHU Kejia, GUAN Yong, LI Shanjun, DING Sentai. A case of non-tuberous sclerosis complex with giant angiomyolipoma of both kidneys treated with simultaneous resection and literature review [J]. Journal of Shandong University (Health Sciences), 2023, 61(2): 65-71.
[15] CI Qianqian, WU Shengying, WAN Qiuhua, MA Yunrong, ZHAO Jianwen, ZHANG Jian. Analysis of prenatal screening and diagnostic methods in 10,265 cases of advanced maternal age [J]. Journal of Shandong University (Health Sciences), 2023, 61(1): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MA Qingyuan, PU Peidong, HAN Fei, WANG Chao, ZHU Zhoujun, WANG Weishan, SHI Chenhui. Effect of miR-27b-3p regulating SMAD1 on osteosarcoma cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 32 -37 .
[2] SUO Dongyang, SHEN Fei, GUO Hao, LIU Lichang, YANG Huimin, YANG Xiangdong. Expression and mechanism of Tim-3 in animal model of drug-induced acute kidney injury[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 1 -6 .
[3] ZHANG Baowen, LEI Xiangli, LI Jinna, LUO Xiangjun, ZOU Rong. miR-21-5p targeted TIMP3 to inhibit proliferation and extracellular matrix accumulation of mesangial cells in Type II diabetic nephropathy mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 7 -14 .
[4] FU Jieqi, ZHANG Man, ZHANG Xiaolu, LI Hui, CHEN Hong. Molecular mechanism of Toll-like receptor 4 in the aggravation of blood lipid accumulation by inhibiting the peroxisome proliferator-activate receptor γ[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 24 -31 .
[5] DING Xiangyun, YU Qingmei, ZHANG Wenfang, ZHUANG Yuan, HAO Jing. Correlation of the expression of insulin-like growth factor II in granulosa cells and ovulation induction outcomes of 84 patients with polycystic ovary syndrome[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 60 -66 .
[6] XU Yuxiang, LIU Yudong, ZHANG Peng, DUAN Ruisheng. A retrospective analysis of risk factors of cerebral microbleeds in 101 patients with cerebral small vessel disease[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 67 -71 .
[7] LONG Tingting, XIE Ming, ZHOU Lu, ZHU Junde. Effect of Noggin protein on learning and memory abilities and the dentate gyrus structure after cerebral ischemia reperfusion injury in mice[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 15 -23 .
[8] LI Ning, LI Juan, XIE Yan, LI Peilong, WANG Yunshan, DU Lutao, WANG Chuanxin. Expression of LncRNA AL109955.1 in 80 cases of colorectal cancer and its effect on cell proliferation, migration and invasion[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 38 -46 .
[9] XIAO Juan, XIAO Qiang, CONG Wei, LI Ting, DING Shouluan, ZHANG Yuan, SHAO Chunchun, WU Mei, LIU Jianing, JIA Hongying. Comparison of diagnostic efficacy of two kinds of thyroid imagine reporting and data systems[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 53 -59 .
[10] GUO Zhihua, ZHAO Daqing, XING Yuan, WANG Wei, LIANG Leping, YANG Jing, ZHAO Qianqian. Single-stage end-to-end anastomosis in the management of severe cervical tracheal stenosis[J]. Journal of Shandong University (Health Sciences), 2020, 1(7): 72 -76 .