山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (5): 8-14.doi: 10.6040/j.issn.1671-7554.0.2021.0273
摘要:
病毒感染可引起人体多种疾病的发生,近年来冠状病毒引起的呼吸道传染病,特别是新型冠状病毒肺炎(COVID-19)在世界范围内的暴发和流行,严重威胁了人类的生命健康,对公共卫生安全造成了巨大挑战。病毒疫苗的研发和使用是应对病毒传播与流行的重要手段。脊髓灰质炎、乙型肝炎病毒等病毒疫苗的成功研制和应用有效地抑制了疾病的流行,为其他病毒疫苗的开发提供了范本。重组病毒载体及mRNA疫苗等新技术和新平台的出现,为包括COVID-19在内的新兴传染病病毒疫苗的研发提供了新的解决方案。本文主要综述了目前病毒疫苗的主要研发平台及其相关进展,并总结了病毒疫苗研发中仍亟待解决的问题,对未来病毒疫苗的发展方向进行展望。
中图分类号:
1 | Katz IT , Weintraub R , Bekker LG , et al. From vaccine nationalism to vaccine equity-finding a path forward[J]. Lancet, 2021, 384 (14): 1281- 1283. |
2 |
Ansariniya H , Seifati SM , Zaker E , et al. Comparison of immune response between SARS, MERS, and COVID-19 infection, perspective on vaccine design and development[J]. Biomed Res Int, 2021, 2021, 8870425.
doi: 10.1155/2021/8870425 |
3 |
Lancet Commission on COVID-19 Vaccines and Therapeutics Task Force Members . Operation Warp Speed: implications for global vaccine security[J]. Lancet Glob Health, 2021, S2214-109X (21): 00140- 00146.
doi: 10.1016/S2214-109X(21)00140-6 |
4 |
Alfaro-Murillo JA , Avila-Aguero ML , Fitzpatrick MC , et al. The case for replacing live oral polio vaccine with inactivated vaccine in the Americas[J]. Lancet, 2020, 395 (10230): 1163- 1166.
doi: 10.1016/S0140-6736(20)30213-0 |
5 |
Bravo C , Mege L , Vigne C , et al. Clinical experience with the inactivated hepatitis a vaccine, Avaxim 80U Pediatric[J]. Expert Rev Vaccines, 2019, 18 (3): 209- 223.
doi: 10.1080/14760584.2019.1580578 |
6 |
Mao QY , Wang Y , Bian L , et al. EV71 vaccine, a new tool to control outbreaks of hand, foot and mouth disease (HFMD)[J]. Expert Rev Vaccines, 2016, 15 (5): 599- 606.
doi: 10.1586/14760584.2016.1138862 |
7 |
Wood JM , Robertson JS . From lethal virus to life-saving vaccine: developing inactivated vaccines for pandemic influenza[J]. Nat Rev Microbiol, 2004, 2 (10): 842- 847.
doi: 10.1038/nrmicro979 |
8 |
Tahir Ul Qamar M , Saleem S , Ashfaa UA , et al. Epitope-based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: an immune-informatics study[J]. J Transl Med, 2019, 17 (1): 362.
doi: 10.1186/s12967-019-2116-8 |
9 |
Watanabe Y , Allen JD , Wrapp D , et al. Site-specific glycan analysis of the SARS-CoV-2 spike[J]. Science, 2020, 369 (6501): 330- 333.
doi: 10.1126/science.abb9983 |
10 |
Jeyanathan M , Afkhami S , Smaill F , et al. Immunological considerations for COVID-19 vaccine strategies[J]. Nat Rev Immunol, 2020, 20 (10): 615- 632.
doi: 10.1038/s41577-020-00434-6 |
11 |
Lamb YN . Cell-based quadrivalent inactivated influenza virus vaccine (FlucelvaxTetra/Flucelvax Quadrivalent): a review in the prevention of influenza[J]. Drugs, 2019, 79 (12): 1337- 1348.
doi: 10.1007/s40265-019-01176-z |
12 |
Izurieta HS , Chillarige Y , Kelman J , et al. Relative effectiveness of cell-cultured and egg-based influenza vaccines among elderly persons in the united states, 2017-2018[J]. J Infect Dis, 2019, 220 (8): 1255- 1264.
doi: 10.1093/infdis/jiy716 |
13 |
Wang H , Zhang Y , Huang B , et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2[J]. Cell, 2020, 182 (3): 713- 721.
doi: 10.1016/j.cell.2020.06.008 |
14 |
Gao Q , Bao L , Mao H , et al. Development of an inactivated vaccine candidate for SARS-CoV-2[J]. Science, 2020, 369 (6499): 77- 81.
doi: 10.1126/science.abc1932 |
15 |
Jimenez-Guardeno JM , Regla-Nava JA , Nieto-Torres JL , et al. Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine[J]. PLoS Pathog, 2015, 11 (10): e1005215.
doi: 10.1371/journal.ppat.1005215 |
16 |
Mueller S , Stauft CB , Kalkeri R , et al. A codon-pair deoptimized live-attenuated vaccine against respiratory syncytial virus is immunogenic and efficacious in non-human primates[J]. Vaccine, 2020, 38 (14): 2943- 2948.
doi: 10.1016/j.vaccine.2020.02.056 |
17 |
Bolles M , Deming D , Long K , et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge[J]. J Virol, 2011, 85 (23): 12201- 12215.
doi: 10.1128/JVI.06048-11 |
18 |
Diamond MS , Pierson TC . The challenges of vaccine development against a new virus during a pandemic[J]. Cell Host Microbe, 2020, 27 (5): 699- 703.
doi: 10.1016/j.chom.2020.04.021 |
19 |
Oscherwitz J . The promise and challenge of epitope-focused vaccines[J]. Hum Vaccin Immunother, 2016, 12 (8): 2113- 2116.
doi: 10.1080/21645515.2016.1160977 |
20 |
Liang JG , Su D , Song TZ , et al. S-Trimer, a COVID-19 subunit vaccine candidate, induces protective immunity in nonhuman primates[J]. Nat Commun, 2021, 12 (1): 1346.
doi: 10.1038/s41467-021-21634-1 |
21 |
Yang J , Wang W , Chen Z , et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity[J]. Nature, 2020, 586 (7830): 572- 577.
doi: 10.1038/s41586-020-2599-8 |
22 |
Nooraei S , Bahrulolum H , Hoseini ZS , et al. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers[J]. J Nanobiotechnology, 2021, 19 (1): 59.
doi: 10.1186/s12951-021-00806-7 |
23 |
Qian C , Liu X , Xu Q , et al. Recent progress on the versatility of virus-like particles[J]. Vaccines (Basel), 2020, 8 (1): 139.
doi: 10.3390/vaccines8010139 |
24 |
Li Z , Wang D , Gu Y , et al. Crystal structures of two immune complexes identify determinants for viral infectivity and type-specific neutralization of human papillomavirus[J]. mBio, 2017, 8 (5): e00787- 17.
doi: 10.1128/mBio.00787-17 |
25 |
Lokugamage KG , Yoshikawa-Iwata N , Ito N , et al. Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV[J]. Vaccine, 2008, 26 (6): 797- 808.
doi: 10.1016/j.vaccine.2007.11.092 |
26 |
Lu X , Chen Y , Bai B , et al. Immune responses against severe acute respiratory syndrome coronavirus induced by virus-like particles in mice[J]. Immunology, 2007, 122 (4): 496- 502.
doi: 10.1111/j.1365-2567.2007.02676.x |
27 |
Naskalska A , Dabrowska A , Nowak P , et al. Novel coronavirus-like particles targeting cells lining the respiratory tract[J]. PLoS One, 2018, 13 (9): e0203489.
doi: 10.1371/journal.pone.0203489 |
28 |
Donaldson B , Lateef Z , Walker GF , et al. Virus-like particle vaccines: immunology and formulation for clinical translation[J]. Expert Rev Vaccines, 2018, 17 (9): 833- 849.
doi: 10.1080/14760584.2018.1516552 |
29 |
Humphreys IR , Sebastian S . Novel viral vectors in infectious diseases[J]. Immunology, 2018, 153 (1): 1- 9.
doi: 10.1111/imm.12829 |
30 |
Afkhami S , Yao Y , Xing Z . Methods and clinical development of adenovirus-vectored vaccines against mucosal pathogens[J]. Mol Ther Methods Clin Dev, 2016, 3, 16030.
doi: 10.1038/mtm.2016.30 |
31 |
Zhu FC , Hou LH , Li JX , et al. Safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in China: preliminary report of a randomised, double-blind, placebo-controlled, phase 1 trial[J]. Lancet, 2015, 385 (9984): 2272- 2279.
doi: 10.1016/S0140-6736(15)60553-0 |
32 |
Zhu FC , Li YH , Guan XH , et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial[J]. Lancet, 2020, 395 (10240): 1845- 1854.
doi: 10.1016/S0140-6736(20)31208-3 |
33 |
Zhu FC , Guan XH , Li YH , et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial[J]. Lancet, 2020, 396 (10249): 479- 488.
doi: 10.1016/S0140-6736(20)31605-6 |
34 |
Henao-Restrepo AM , Longini IM , Egger M , et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial[J]. Lancet, 2015, 386 (9996): 857- 866.
doi: 10.1016/S0140-6736(15)61117-5 |
35 |
Pardi N , Hogan MJ , Porter FW , et al. mRNA vaccines-a new era in vaccinology[J]. Nat Rev Drug Discov, 2018, 17 (4): 261- 279.
doi: 10.1038/nrd.2017.243 |
36 |
Chagla Z . The BNT162b2 (BioNTech/Pfizer) vaccine had 95% efficacy against COVID-19 ≥7 days after the 2nd dose[J]. Ann Intern Med, 2021, 174 (2): JC15.
doi: 10.7326/ACPJ202102160-015 |
37 |
Walsh EE , FrenckJr RW , Falsey AR , et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates[J]. N Engl J Med, 2020, 383 (25): 2439- 2450.
doi: 10.1056/NEJMoa2027906 |
38 |
Pardi N , Parkhouse K , Kirkpatrick E , et al. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies[J]. Nat Commun, 2018, 9 (1): 3361.
doi: 10.1038/s41467-018-05482-0 |
39 |
Feldman RA , Fuhr R , Smolenov I , et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials[J]. Vaccine, 2019, 37 (25): 3326- 3334.
doi: 10.1016/j.vaccine.2019.04.074 |
40 |
Shaw CA , Ciarlet M , Cooper BW , et al. The path to an RSV vaccine[J]. Curr Opin Virol, 2013, 3 (3): 332- 342.
doi: 10.1016/j.coviro.2013.05.003 |
41 |
Sheerin D , Openshaw PJ , Pollard AJ . Issues in vaccinology: Present challenges and future directions[J]. Eur J Immunol, 2017, 47 (12): 2017- 2025.
doi: 10.1002/eji.201746942 |
42 |
Lee WS , Wheatley AK , Kent SJ , et al. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies[J]. Nat Microbiol, 2020, 5 (10): 1185- 1191.
doi: 10.1038/s41564-020-00789-5 |
43 |
Morrone SR , Lok SM . Structural perspectives of antibody-dependent enhancement of infection of dengue virus[J]. Curr Opin Virol, 2019, 36, 1- 8.
doi: 10.1016/j.coviro.2019.02.002 |
44 |
Boyaka PN . Inducing mucosal IgA: a challenge for vaccine adjuvants and delivery systems[J]. J Immunol, 2017, 199 (1): 9- 16.
doi: 10.4049/jimmunol.1601775 |
45 |
Woodrow KA , Bennett KM , Lo DD . Mucosal vaccine design and delivery[J]. Annu Rev Biomed Eng, 2012, 14, 17- 46.
doi: 10.1146/annurev-bioeng-071811-150054 |
46 | Miquel-Clopes A , Bentley EG , Stewart JP , et al. Mucosal vaccines and technology[J]. Clin Exp Immunol, 2019, 196 (2): 205- 214. |
47 |
Coffman RL , Sher A , Seder RA . Vaccine adjuvants: putting innate immunity to work[J]. Immunity, 2010, 33 (4): 492- 503.
doi: 10.1016/j.immuni.2010.10.002 |
[1] | 周溪,黄霂晗,任玉洁,邱洋. 新型冠状病毒感染与天然免疫及炎症反应[J]. 山东大学学报 (医学版), 2021, 59(5): 15-21. |
[2] | 董宏杰,张俊梅,王帅,王宏伟,张坤迪,胡玮,谢晓鸿,谢时灵,谷立川. 新型冠状病毒混合样品检测研究[J]. 山东大学学报 (医学版), 2021, 59(4): 1-5. |
[3] | 于莹,张功,刘晶,颜世童,韩涛,黄海量. 基于网络药理学和分子对接方法探析黄芪预防新型冠状病毒肺炎的潜在作用机制[J]. 山东大学学报 (医学版), 2021, 59(4): 6-16. |
[4] | 任敏敏,王广梅,张丽,杨瑶瑶,封丹珺. 335名抗疫一线护理人员心理弹性对共情疲劳的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 88-94. |
[5] | 余雪源,张硕,燕芳芳,苏德振. 采用清肺排毒汤联合西药43例与单用西药46例的新型冠状病毒肺炎临床疗效比较[J]. 山东大学学报 (医学版), 2020, 58(12): 47-53. |
[6] | 王玲,曹海霞,张玲,张文娜,潘艳萍,史颖,张伟,崔峰. 淄博市一起新型冠状病毒肺炎家族聚集性疫情调查分析[J]. 山东大学学报 (医学版), 2020, 58(10): 100-104. |
[7] | 白尧,陈志军,宋姝璇,贺真,陈保忠,邵中军,刘昆. 西安市一起新型冠状病毒肺炎家族聚集性疫情调查分析[J]. 山东大学学报 (医学版), 2020, 58(10): 95-99. |
[8] | 张辉, 宋姝璇, 刘继锋, 贺真, 邵中军, 刘昆. 西安市新型冠状病毒肺炎疫情分析[J]. 山东大学学报 (医学版), 2020, 58(10): 89-94. |
[9] | 刘利利,贾艳,齐畅,朱雨辰,李春雨,佘凯丽,刘廷轩,李秀君. 基于时空统计方法分析温州市2020年1~3月新型冠状病毒肺炎的聚集性分布[J]. 山东大学学报 (医学版), 2020, 58(10): 82-88. |
[10] | 刘廷轩,齐畅,佘凯丽,贾艳,朱雨辰,李春雨,刘利利,王旭,章志华,李秀君. 河北省新型冠状病毒肺炎流行特征与时空聚集性分析[J]. 山东大学学报 (医学版), 2020, 58(10): 74-81. |
[11] | 贾艳,李春雨,刘利利,佘凯丽,刘廷轩,朱雨辰,齐畅,张丹丹,王旭,陈恩富,李秀君. 浙江省新型冠状病毒肺炎的流行特征与空间分析[J]. 山东大学学报 (医学版), 2020, 58(10): 66-73. |
[12] | 齐畅,朱雨辰,李春雨,刘利利,张丹丹,王旭,佘凯丽,陈鸣,康殿民,李秀君. 基于地理加权广义线性模型探索山东省新型冠状病毒肺炎的影响因素[J]. 山东大学学报 (医学版), 2020, 58(10): 53-59. |
[13] | 佘凯丽,张丹丹,齐畅,刘廷轩,贾艳,朱雨辰,李春雨,刘利利,王旭,苏虹,李秀君. 安徽省新型冠状病毒肺炎流行病学特征及其潜伏期估计[J]. 山东大学学报 (医学版), 2020, 58(10): 44-52. |
[14] | 李春雨,朱雨辰,齐畅,刘利利,张丹丹,王旭,徐学利,李秀君. 河南省信阳市新型冠状病毒肺炎的流行动态[J]. 山东大学学报 (医学版), 2020, 58(10): 38-43. |
[15] | 朱雨辰,李春雨,齐畅,王莹,刘利利,张丹丹,王旭,康殿民,李秀君. 基于泊松过程的山东省新型冠状病毒肺炎的再生数估计及流行动态分析[J]. 山东大学学报 (医学版), 2020, 58(10): 32-37. |
|