您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (5): 8-14.doi: 10.6040/j.issn.1671-7554.0.2021.0273

• 医学病毒的基础与临床研究进展专题 • 上一篇    下一篇

病毒疫苗的研发现状及展望

王凯*()   

  1. 山东大学齐鲁医院肝病科 山东大学肝病研究所, 山东 济南 250012
  • 收稿日期:2021-03-10 出版日期:2021-05-10 发布日期:2021-06-01
  • 通讯作者: 王凯 E-mail:wangdoc876@126.com; wangdoc2010@163.com
  • 作者简介:王凯,医学博士,博士后,二级教授,主任医师,博士研究生导师。现为山东大学齐鲁医院肝病科创建人、学术带头人,山东大学肝病研究所所长,国家感染性疾病临床医学研究中心山东省分中心负责人。兼任国家卫健委合理用药专家委员会抗菌药物专业组专家,全省流行病传染病防控和应急处置中医药专家委员会成员,中华医学会医学病毒学分会委员,中国医师协会感染科医师分会常务委员,国家肿瘤微创治疗产业技术创新战略联盟副主任委员,中国微生物学会干扰素与细胞因子专业委员会副主任委员,中国研究型医院学会感染病学专业委员会常务委员,山东省医学会医学病毒学分会主任委员,山东省医学会感染病学分会名誉主任委员,山东省医师协会感染科医师分会名誉主任委员等。青岛市拔尖人才,山东大学齐鲁医学院杰出医学专家,第十届吴阶平医学研究奖-保罗·杨森药学研究奖获得者。长期从事肝脏疾病的医疗、教学和科研工作。在肝衰竭、肝硬化、肝癌、病毒性肝炎、药物性肝病、脂肪肝及自身免疫性肝病等疾病的诊治方面具有丰富的临床经验,对晚期肝癌采用中西医结合治疗,明显改善了患者的生活质量,延长了带瘤生存期。以课题负责人身份承担国家科技重大专项任务、国家科技支撑计划、国家自然科学基金等多项课题。以通讯作者在国内外核心期刊发表论文100余篇,其中SCI收录80余篇。主编《中西医结合肝胆病治疗学》《肝胆病学》《临床肝病治疗学》《简明临床肝病学》等专著。获得授权国家发明专利10余项,新申请国家发明专利8项,有5项专利成果实现转让。近年来以第一完成人获山东省科学技术奖二等奖2项、三等奖1项。多项科研成果在企业完成转化并落地投产,是“饮久舒”等产品的发明人
  • 基金资助:
    国家科技重大专项(2018ZX10302206);国家科技重大专项(2017ZX10202202)

Current status and prospect of viral vaccines research and development

Kai WANG*()   

  1. Department of Hepatology, Qilu Hospital of Shandong University; Institute of Hepatology, Shandong University, Jinan 250012, Shandong, China
  • Received:2021-03-10 Online:2021-05-10 Published:2021-06-01
  • Contact: Kai WANG E-mail:wangdoc876@126.com; wangdoc2010@163.com

摘要:

病毒感染可引起人体多种疾病的发生,近年来冠状病毒引起的呼吸道传染病,特别是新型冠状病毒肺炎(COVID-19)在世界范围内的暴发和流行,严重威胁了人类的生命健康,对公共卫生安全造成了巨大挑战。病毒疫苗的研发和使用是应对病毒传播与流行的重要手段。脊髓灰质炎、乙型肝炎病毒等病毒疫苗的成功研制和应用有效地抑制了疾病的流行,为其他病毒疫苗的开发提供了范本。重组病毒载体及mRNA疫苗等新技术和新平台的出现,为包括COVID-19在内的新兴传染病病毒疫苗的研发提供了新的解决方案。本文主要综述了目前病毒疫苗的主要研发平台及其相关进展,并总结了病毒疫苗研发中仍亟待解决的问题,对未来病毒疫苗的发展方向进行展望。

关键词: 病毒疫苗, 冠状病毒, 重组病毒载体, mRNA疫苗, 抗体依赖的增强效应

Abstract:

Virus infection can cause several diseases in human. In the past decades, outbreaks and epidemics of respiratory infectious diseases caused by coronary viruses, especially coronavirus disease 2019 (COVID-19), have become serious health hazards and posed huge challenges to public health. The development and application of viral vaccines have been an important means to counteract the spread of viruses. Historically, poliovirus and hepatitis B virus vaccines have successfully suppressed the transmission of diseases and provided a model for the development of vaccines. Recently, the emergence of novel technologies and platforms such as recombinant viral vector and mRNA vaccine has provided new approaches to the development of vaccines against emerging infectious diseases including COVID-19. This paper reviews the current situation and progress of platforms, summarizes problems to be solved, and forecasts the directions of viral vaccines development.

Key words: Viral vaccine, Coronavirus, Recombinant viral vector, mRNA vaccine, Antibody-dependent enhancement

中图分类号: 

  • R186
1 Katz IT , Weintraub R , Bekker LG , et al. From vaccine nationalism to vaccine equity-finding a path forward[J]. Lancet, 2021, 384 (14): 1281- 1283.
2 Ansariniya H , Seifati SM , Zaker E , et al. Comparison of immune response between SARS, MERS, and COVID-19 infection, perspective on vaccine design and development[J]. Biomed Res Int, 2021, 2021, 8870425.
doi: 10.1155/2021/8870425
3 Lancet Commission on COVID-19 Vaccines and Therapeutics Task Force Members . Operation Warp Speed: implications for global vaccine security[J]. Lancet Glob Health, 2021, S2214-109X (21): 00140- 00146.
doi: 10.1016/S2214-109X(21)00140-6
4 Alfaro-Murillo JA , Avila-Aguero ML , Fitzpatrick MC , et al. The case for replacing live oral polio vaccine with inactivated vaccine in the Americas[J]. Lancet, 2020, 395 (10230): 1163- 1166.
doi: 10.1016/S0140-6736(20)30213-0
5 Bravo C , Mege L , Vigne C , et al. Clinical experience with the inactivated hepatitis a vaccine, Avaxim 80U Pediatric[J]. Expert Rev Vaccines, 2019, 18 (3): 209- 223.
doi: 10.1080/14760584.2019.1580578
6 Mao QY , Wang Y , Bian L , et al. EV71 vaccine, a new tool to control outbreaks of hand, foot and mouth disease (HFMD)[J]. Expert Rev Vaccines, 2016, 15 (5): 599- 606.
doi: 10.1586/14760584.2016.1138862
7 Wood JM , Robertson JS . From lethal virus to life-saving vaccine: developing inactivated vaccines for pandemic influenza[J]. Nat Rev Microbiol, 2004, 2 (10): 842- 847.
doi: 10.1038/nrmicro979
8 Tahir Ul Qamar M , Saleem S , Ashfaa UA , et al. Epitope-based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: an immune-informatics study[J]. J Transl Med, 2019, 17 (1): 362.
doi: 10.1186/s12967-019-2116-8
9 Watanabe Y , Allen JD , Wrapp D , et al. Site-specific glycan analysis of the SARS-CoV-2 spike[J]. Science, 2020, 369 (6501): 330- 333.
doi: 10.1126/science.abb9983
10 Jeyanathan M , Afkhami S , Smaill F , et al. Immunological considerations for COVID-19 vaccine strategies[J]. Nat Rev Immunol, 2020, 20 (10): 615- 632.
doi: 10.1038/s41577-020-00434-6
11 Lamb YN . Cell-based quadrivalent inactivated influenza virus vaccine (FlucelvaxTetra/Flucelvax Quadrivalent): a review in the prevention of influenza[J]. Drugs, 2019, 79 (12): 1337- 1348.
doi: 10.1007/s40265-019-01176-z
12 Izurieta HS , Chillarige Y , Kelman J , et al. Relative effectiveness of cell-cultured and egg-based influenza vaccines among elderly persons in the united states, 2017-2018[J]. J Infect Dis, 2019, 220 (8): 1255- 1264.
doi: 10.1093/infdis/jiy716
13 Wang H , Zhang Y , Huang B , et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2[J]. Cell, 2020, 182 (3): 713- 721.
doi: 10.1016/j.cell.2020.06.008
14 Gao Q , Bao L , Mao H , et al. Development of an inactivated vaccine candidate for SARS-CoV-2[J]. Science, 2020, 369 (6499): 77- 81.
doi: 10.1126/science.abc1932
15 Jimenez-Guardeno JM , Regla-Nava JA , Nieto-Torres JL , et al. Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine[J]. PLoS Pathog, 2015, 11 (10): e1005215.
doi: 10.1371/journal.ppat.1005215
16 Mueller S , Stauft CB , Kalkeri R , et al. A codon-pair deoptimized live-attenuated vaccine against respiratory syncytial virus is immunogenic and efficacious in non-human primates[J]. Vaccine, 2020, 38 (14): 2943- 2948.
doi: 10.1016/j.vaccine.2020.02.056
17 Bolles M , Deming D , Long K , et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge[J]. J Virol, 2011, 85 (23): 12201- 12215.
doi: 10.1128/JVI.06048-11
18 Diamond MS , Pierson TC . The challenges of vaccine development against a new virus during a pandemic[J]. Cell Host Microbe, 2020, 27 (5): 699- 703.
doi: 10.1016/j.chom.2020.04.021
19 Oscherwitz J . The promise and challenge of epitope-focused vaccines[J]. Hum Vaccin Immunother, 2016, 12 (8): 2113- 2116.
doi: 10.1080/21645515.2016.1160977
20 Liang JG , Su D , Song TZ , et al. S-Trimer, a COVID-19 subunit vaccine candidate, induces protective immunity in nonhuman primates[J]. Nat Commun, 2021, 12 (1): 1346.
doi: 10.1038/s41467-021-21634-1
21 Yang J , Wang W , Chen Z , et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity[J]. Nature, 2020, 586 (7830): 572- 577.
doi: 10.1038/s41586-020-2599-8
22 Nooraei S , Bahrulolum H , Hoseini ZS , et al. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers[J]. J Nanobiotechnology, 2021, 19 (1): 59.
doi: 10.1186/s12951-021-00806-7
23 Qian C , Liu X , Xu Q , et al. Recent progress on the versatility of virus-like particles[J]. Vaccines (Basel), 2020, 8 (1): 139.
doi: 10.3390/vaccines8010139
24 Li Z , Wang D , Gu Y , et al. Crystal structures of two immune complexes identify determinants for viral infectivity and type-specific neutralization of human papillomavirus[J]. mBio, 2017, 8 (5): e00787- 17.
doi: 10.1128/mBio.00787-17
25 Lokugamage KG , Yoshikawa-Iwata N , Ito N , et al. Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SCoV) S protein protect mice against challenge with SCoV[J]. Vaccine, 2008, 26 (6): 797- 808.
doi: 10.1016/j.vaccine.2007.11.092
26 Lu X , Chen Y , Bai B , et al. Immune responses against severe acute respiratory syndrome coronavirus induced by virus-like particles in mice[J]. Immunology, 2007, 122 (4): 496- 502.
doi: 10.1111/j.1365-2567.2007.02676.x
27 Naskalska A , Dabrowska A , Nowak P , et al. Novel coronavirus-like particles targeting cells lining the respiratory tract[J]. PLoS One, 2018, 13 (9): e0203489.
doi: 10.1371/journal.pone.0203489
28 Donaldson B , Lateef Z , Walker GF , et al. Virus-like particle vaccines: immunology and formulation for clinical translation[J]. Expert Rev Vaccines, 2018, 17 (9): 833- 849.
doi: 10.1080/14760584.2018.1516552
29 Humphreys IR , Sebastian S . Novel viral vectors in infectious diseases[J]. Immunology, 2018, 153 (1): 1- 9.
doi: 10.1111/imm.12829
30 Afkhami S , Yao Y , Xing Z . Methods and clinical development of adenovirus-vectored vaccines against mucosal pathogens[J]. Mol Ther Methods Clin Dev, 2016, 3, 16030.
doi: 10.1038/mtm.2016.30
31 Zhu FC , Hou LH , Li JX , et al. Safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in China: preliminary report of a randomised, double-blind, placebo-controlled, phase 1 trial[J]. Lancet, 2015, 385 (9984): 2272- 2279.
doi: 10.1016/S0140-6736(15)60553-0
32 Zhu FC , Li YH , Guan XH , et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial[J]. Lancet, 2020, 395 (10240): 1845- 1854.
doi: 10.1016/S0140-6736(20)31208-3
33 Zhu FC , Guan XH , Li YH , et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial[J]. Lancet, 2020, 396 (10249): 479- 488.
doi: 10.1016/S0140-6736(20)31605-6
34 Henao-Restrepo AM , Longini IM , Egger M , et al. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial[J]. Lancet, 2015, 386 (9996): 857- 866.
doi: 10.1016/S0140-6736(15)61117-5
35 Pardi N , Hogan MJ , Porter FW , et al. mRNA vaccines-a new era in vaccinology[J]. Nat Rev Drug Discov, 2018, 17 (4): 261- 279.
doi: 10.1038/nrd.2017.243
36 Chagla Z . The BNT162b2 (BioNTech/Pfizer) vaccine had 95% efficacy against COVID-19 ≥7 days after the 2nd dose[J]. Ann Intern Med, 2021, 174 (2): JC15.
doi: 10.7326/ACPJ202102160-015
37 Walsh EE , FrenckJr RW , Falsey AR , et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates[J]. N Engl J Med, 2020, 383 (25): 2439- 2450.
doi: 10.1056/NEJMoa2027906
38 Pardi N , Parkhouse K , Kirkpatrick E , et al. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies[J]. Nat Commun, 2018, 9 (1): 3361.
doi: 10.1038/s41467-018-05482-0
39 Feldman RA , Fuhr R , Smolenov I , et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials[J]. Vaccine, 2019, 37 (25): 3326- 3334.
doi: 10.1016/j.vaccine.2019.04.074
40 Shaw CA , Ciarlet M , Cooper BW , et al. The path to an RSV vaccine[J]. Curr Opin Virol, 2013, 3 (3): 332- 342.
doi: 10.1016/j.coviro.2013.05.003
41 Sheerin D , Openshaw PJ , Pollard AJ . Issues in vaccinology: Present challenges and future directions[J]. Eur J Immunol, 2017, 47 (12): 2017- 2025.
doi: 10.1002/eji.201746942
42 Lee WS , Wheatley AK , Kent SJ , et al. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies[J]. Nat Microbiol, 2020, 5 (10): 1185- 1191.
doi: 10.1038/s41564-020-00789-5
43 Morrone SR , Lok SM . Structural perspectives of antibody-dependent enhancement of infection of dengue virus[J]. Curr Opin Virol, 2019, 36, 1- 8.
doi: 10.1016/j.coviro.2019.02.002
44 Boyaka PN . Inducing mucosal IgA: a challenge for vaccine adjuvants and delivery systems[J]. J Immunol, 2017, 199 (1): 9- 16.
doi: 10.4049/jimmunol.1601775
45 Woodrow KA , Bennett KM , Lo DD . Mucosal vaccine design and delivery[J]. Annu Rev Biomed Eng, 2012, 14, 17- 46.
doi: 10.1146/annurev-bioeng-071811-150054
46 Miquel-Clopes A , Bentley EG , Stewart JP , et al. Mucosal vaccines and technology[J]. Clin Exp Immunol, 2019, 196 (2): 205- 214.
47 Coffman RL , Sher A , Seder RA . Vaccine adjuvants: putting innate immunity to work[J]. Immunity, 2010, 33 (4): 492- 503.
doi: 10.1016/j.immuni.2010.10.002
[1] 周溪,黄霂晗,任玉洁,邱洋. 新型冠状病毒感染与天然免疫及炎症反应[J]. 山东大学学报 (医学版), 2021, 59(5): 15-21.
[2] 董宏杰,张俊梅,王帅,王宏伟,张坤迪,胡玮,谢晓鸿,谢时灵,谷立川. 新型冠状病毒混合样品检测研究[J]. 山东大学学报 (医学版), 2021, 59(4): 1-5.
[3] 于莹,张功,刘晶,颜世童,韩涛,黄海量. 基于网络药理学和分子对接方法探析黄芪预防新型冠状病毒肺炎的潜在作用机制[J]. 山东大学学报 (医学版), 2021, 59(4): 6-16.
[4] 任敏敏,王广梅,张丽,杨瑶瑶,封丹珺. 335名抗疫一线护理人员心理弹性对共情疲劳的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 88-94.
[5] 余雪源,张硕,燕芳芳,苏德振. 采用清肺排毒汤联合西药43例与单用西药46例的新型冠状病毒肺炎临床疗效比较[J]. 山东大学学报 (医学版), 2020, 58(12): 47-53.
[6] 王玲,曹海霞,张玲,张文娜,潘艳萍,史颖,张伟,崔峰. 淄博市一起新型冠状病毒肺炎家族聚集性疫情调查分析[J]. 山东大学学报 (医学版), 2020, 58(10): 100-104.
[7] 白尧,陈志军,宋姝璇,贺真,陈保忠,邵中军,刘昆. 西安市一起新型冠状病毒肺炎家族聚集性疫情调查分析[J]. 山东大学学报 (医学版), 2020, 58(10): 95-99.
[8] 张辉, 宋姝璇, 刘继锋, 贺真, 邵中军, 刘昆. 西安市新型冠状病毒肺炎疫情分析[J]. 山东大学学报 (医学版), 2020, 58(10): 89-94.
[9] 刘利利,贾艳,齐畅,朱雨辰,李春雨,佘凯丽,刘廷轩,李秀君. 基于时空统计方法分析温州市2020年1~3月新型冠状病毒肺炎的聚集性分布[J]. 山东大学学报 (医学版), 2020, 58(10): 82-88.
[10] 刘廷轩,齐畅,佘凯丽,贾艳,朱雨辰,李春雨,刘利利,王旭,章志华,李秀君. 河北省新型冠状病毒肺炎流行特征与时空聚集性分析[J]. 山东大学学报 (医学版), 2020, 58(10): 74-81.
[11] 贾艳,李春雨,刘利利,佘凯丽,刘廷轩,朱雨辰,齐畅,张丹丹,王旭,陈恩富,李秀君. 浙江省新型冠状病毒肺炎的流行特征与空间分析[J]. 山东大学学报 (医学版), 2020, 58(10): 66-73.
[12] 齐畅,朱雨辰,李春雨,刘利利,张丹丹,王旭,佘凯丽,陈鸣,康殿民,李秀君. 基于地理加权广义线性模型探索山东省新型冠状病毒肺炎的影响因素[J]. 山东大学学报 (医学版), 2020, 58(10): 53-59.
[13] 佘凯丽,张丹丹,齐畅,刘廷轩,贾艳,朱雨辰,李春雨,刘利利,王旭,苏虹,李秀君. 安徽省新型冠状病毒肺炎流行病学特征及其潜伏期估计[J]. 山东大学学报 (医学版), 2020, 58(10): 44-52.
[14] 李春雨,朱雨辰,齐畅,刘利利,张丹丹,王旭,徐学利,李秀君. 河南省信阳市新型冠状病毒肺炎的流行动态[J]. 山东大学学报 (医学版), 2020, 58(10): 38-43.
[15] 朱雨辰,李春雨,齐畅,王莹,刘利利,张丹丹,王旭,康殿民,李秀君. 基于泊松过程的山东省新型冠状病毒肺炎的再生数估计及流行动态分析[J]. 山东大学学报 (医学版), 2020, 58(10): 32-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[2] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .
[3] 郭志华,赵大庆,邢园,王薇,梁乐平,杨静,赵倩倩. Ⅰ期端端吻合术治疗重度颈段气管狭窄临床分析[J]. 山东大学学报 (医学版), 2020, 1(7): 72 -76 .
[4] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77 -81 .
[5] 张娟,张璐嘉,肖伟,李顺平. 住院医师规范化培训学员压力知觉与留职意愿及影响因素[J]. 山东大学学报 (医学版), 2020, 1(7): 108 -114 .
[6] 李新钢,张鑫,陈安静. 当代脑计划研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 5 -9, 21 .
[7] 尹义龙,袭肖明,孟宪静. 阿尔兹海默病的智能诊断方法[J]. 山东大学学报 (医学版), 2020, 1(8): 14 -21 .
[8] 余新光,张艳阳. 脑深部电刺激术在阿尔兹海默病中的应用进展[J]. 山东大学学报 (医学版), 2020, 1(8): 22 -27,33 .
[9] 刘树伟,娄云霞,汤煜春. 4D数字脑图谱的构建、不对称性及遗传倾向[J]. 山东大学学报 (医学版), 2020, 1(8): 28 -33 .
[10] 李刚,薛皓,邱伟,赵荣荣. 脑胶质瘤抑制性免疫微环境形成机制及研究进展[J]. 山东大学学报 (医学版), 2020, 1(8): 67 -73 .