您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (10): 32-37.doi: 10.6040/j.issn.1671-7554.0.2020.0683

• • 上一篇    下一篇

基于泊松过程的山东省新型冠状病毒肺炎的再生数估计及流行动态分析

朱雨辰1,李春雨1,齐畅1,王莹1,刘利利1,张丹丹1,王旭1,康殿民2,李秀君1   

  1. 1. 山东大学齐鲁医学院公共卫生学院生物统计学系, 山东 济南 250012;2. 山东省疾病预防控制中心, 山东 济南 250014
  • 发布日期:2020-10-08
  • 通讯作者: 李秀君. E-mail:xjli@sdu.edu.cn 康殿民. E-mail:dmkang66@163.com
  • 基金资助:
    国家自然科学基金(81673238);山东大学新冠肺炎应急攻关科研专项(2020XGC01);国家重点研发计划(2019YFC1200500,2019YFC1200502);山东省重大科技创新工程(2020SFXGFY02-1)

Reproduction number estimation and epidemic analysis of coronavirus disease 2019 in Shandong Province based on Poisson process

ZHU Yuchen1, LI Chunyu1, QI Chang1, WANG Ying1, LIU Lili1, ZHANG Dandan1, WANG Xu1, KANG Dianmin2, LI Xiujun1   

  1. 1. Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. Shandong Center for Disease Control and Prevention, Jinan 250014, Shandong, China
  • Published:2020-10-08

摘要: 目的 探讨山东省新型冠状病毒肺炎(COVID-19)的流行动态,为未来预防和控制COVID-19二次暴发以及其他新发传染病的暴发提供科学依据。 方法 收集山东省卫生健康委员会报告的559例COVID-19确诊病例信息,确定病例的感染日期,基于泊松过程建立传播模型并计算山东省COVID-19疫情期间的基本再生数和瞬时再生数,并对比分析基于顺序贝叶斯和时间-依赖方法的瞬时再生数估计结果。 结果 确诊病例的发病日期与被报告日期的天数之差大致服从威布尔分布。山东省COVID-19开始暴发时,基本再生数R0=2.64(95%CI:1.37~4.51),瞬时再生数随着时间的推移,大致呈现逐渐下降趋势,且3种计算方法的结果均显示出此种趋势。 结论 经过防控措施的干预后,山东省COVID-19的本地流行已经基本结束,但仍需提高警惕,防止疫情二次暴发。

关键词: 新型冠状病毒肺炎, 基本再生数, 瞬时再生数, 泊松过程, 贝叶斯推断

Abstract: Objective To explore the epidemic dynamics of coronavirus disease 2019(COVID-19)in Shandong Province, and to provide a scientific basis for the future prevention and control of new outbreaks of COVID-19 and other emerging infectious diseases. Methods After collecting the information of 559 confirmed cases with COVID-19 reported by the Shandong Provincial Health Commission and determining the infection date of the cases, a propagation model was established based on the Poisson process and the basic reproduction number and instantaneous reproduction number were calculated during the COVID-19 epidemic in Shandong Province. The results obtained by calculating the instantaneous reproduction numbers based on sequential Bayesian and time-dependent methods were compared. Results The difference between the date of onset of a confirmed case and the date when it was reported generally followed the Weibull distribution. When the COVID-19 outbreak started in Shandong Province, the basic reproduction number(R0)was 2.64(95%CI:1.37-4.51), and the instantaneous reproduction number showed a gradually downward trend with time. Three calculation methods all showed the same trend. Conclusion After the intervention of prevention and control measures, the local epidemic of COVID-19 in Shandong Province has basically ended, but the constant vigilance is necessary in order to prevent the second outbreak of the epidemic.

Key words: Coronavirus pneumonia disease 2019, Basic reproductive number, Instantaneous reproduction number, Poisson process, Bayesian inference

中图分类号: 

  • R183
[1] Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China[J]. N Engl J Med, 2020, 382(18): 1708-1720.
[2] 中国疾病预防控制中心新型冠状病毒肺炎应急响应机制流行病学组. 新型冠状病毒肺炎流行病学特征分析[J]. 中华流行病学杂志, 2020, 41(2): 145-151. Team TNCPERE. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases(COVID-19)in China[J]. Chinese Journal of Epidemiology, 2020, 41(2): 145-151.
[3] 中华预防医学会新型冠状病毒肺炎防控专家组. 关于疫情应急处置阶段转入流行高峰持续防控阶段对策的思考 [J]. 中华流行病学杂志, 2020, 41(3): 297-300. Special Expert Group for Control of the Epidemic of Novel Coronavirus Pneumonia of the Chinese Preventive Medicine. Consideration on the strategies during epidemic stage changing from emergency response to continuous prevention and control[J].Chinese Journal of Epidemiology, 2020, 41(3): 297-300.
[4] 周生余,王春亭,张伟,等. 山东省新型冠状病毒肺炎患者537例临床特征与救治效果[J]. 山东大学学报(医学版), 2020, 58(3): 44-51. ZHOU Shengyu, WANG Chunting, ZHANG Wei, et al. Clinical characteristics and treatment effect of 537 cases of novel coronavirus pneumonia in Shandong Province[J]. Journal of Shandong University(Health Sciences), 2020, 58(3): 44-51.
[5] Tu W, Tang H, Chen F, et al. Epidemic update and risk assessment of 2019 novel coronavirus — China, January 28, 2020[J]. CCDCW, 2020, 2(6): 83-86.
[6] 山东省卫生健康委员会. 2020年3月11日0时至12时山东省新型冠状病毒肺炎疫情情况[EB/OL].(2020-03-11)[2020-04-24]. http://wsjkw.shandong.gov.cn/ztzl/rdzt/qlzhfkgz/tzgg/202003/t20200311_3046408.html.
[7] Su Y, Gelman A, Yajima M. Multiple imputation with diagnostics(mi)in R: opening windows into the black box[J]. J Stat Softw, 2011, 45(2): 1-31.
[8] Buuren S, Groothuis-Oudshoorn K. Mice: multivariate imputation by chained equations in R[J]. J Stat Softw, 2011, 45(3): 1-67.
[9] Honaker J, King G, Blackwell M. Amelia II: a program for missing data[J]. J Stat Softw, 2011, 45(7): 1-47.
[10] Dye C. Infectious diseases of humans: dynamics and control by R.M. Anderson and R.M. May[J]. Trends in Ecology & Evolution, 1991, 6(10): 340-341.
[11] Lipsitch M, Cohen T, Cooper B, et al. Transmission dynamics and control of severe acute respiratory syndrome[J]. Science, 2003, 300(5627): 1966-1970.
[12] White LF, Pagano M. A likelihood-based method for real-time estimation of the serial interval and reproductive number of an epidemic[J].Stat Med, 2008, 27(16): 2999-3016.
[13] Cori A, Ferguson NM, Fraser C, et al. A new framework and software to estimate time-varying reproduction numbers during epidemics[J].Am J Epidemiol, 2013, 178(9): 1505-1512.
[14] Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus(COVID-19)infections [J]. Int J Infect Dis, 2020, 93: 284-286. doi:10.1016/j.ijid.2020.02.060.
[15] Du Z, Xu X, Wu Y, et al. Serial interval of COVID-19 among publicly reported confirmed cases[J]. Emerg Infect Dis, 2020, 26(6): 1341-1343.
[16] Bettencourt LMA, Ribeiro RM. Real time Bayesian estimation of the epidemic potential of emerging infectious diseases[J]. PLoS One, 2008, 3(5): e2185. doi: 10.1371/journal.pone.0002185.
[17] Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures[J]. Am J Epidemiol, 2004, 160(6): 509-516.
[18] Mahase E. China coronavirus: what do we know so far? [J]. BMJ, 2020, 368: m308. doi: 10.1136/bmj.m308.
[19] Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study[J].The Lancet, 2020, 395(10225): 689-697.
[20] Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus(2019-nCoV)infections among travellers from Wuhan, China, 20-28 January 2020[J]. Euro Surveill, 2020, 25(5): 2000062. doi: 10.2807/1560-7917.ES.2020.25.5.2000062.
[21] Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019(COVID-19)from publicly reported confirmed cases: estimation and application[J].Ann Intern Med, 2020, 172(9): 577-582.
[22] Ki M, Task Force for 2019-nCoV. Epidemiologic characteristics of early cases with 2019 novel coronavirus(2019-nCoV)disease in Korea [J].Epidemiol Health, 2020, 42: e2020007. doi: 10.4178/epih.e2020007.
[23] Linton NM, Kobayashi T, Yang Y, et al. Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data[J]. J Clin Med, 2020, 9(2): 538. doi: 10.3390/jcm9020538.
[24] 高文静, 李立明. 新型冠状病毒肺炎潜伏期或隐性感染者传播研究进展[J]. 中华流行病学杂志, 2020, 41(4): 485-488. GAO Wenjing, LI Liming. Advances on presymptomatic or asymptomatic carrier transmission of COVID-19[J].Chinese Journal of Epidemiology, 2020, 41(4): 485-488.
[25] Lessler J, Reich NG, Cummings DAT, et al. Outbreak of 2009 pandemic influenza A(H1N1)at a New York City school[J]. N Engl J Med, 2009, 361(27): 2628-2636.
[26] Cauchemez S, Boëlle PY, Thomas G, et al. Estimating in real time the efficacy of measures to control emerging communicable diseases[J]. Am J Epidemiol, 2006, 164(6): 591-597.
[27] Cauchemez S, Bhattarai A, Marchbanks TL, et al. Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza[J]. Proc Natl Acad Sci U S A, 2011, 108(7): 2825-2830.
[1] 牛占丛,王彦霞,王晓亚,王晓庆,李亚轻,边竞. 新型冠状病毒肺炎2例报告[J]. 山东大学学报 (医学版), 2020, 58(10): 134-136.
[2] 李焕杰,欧兰香,陈虹,陈健,耿军,高志鹏,王岩,丁兴龙,陈振,朱之炜,刘伦琴,汪运山. 新型冠状病毒IgM-IgG抗体检测试剂盒的制备及对15例患者临床应用初试[J]. 山东大学学报 (医学版), 2020, 58(10): 120-126.
[3] 王彬,布学慧,孔祥亘,张照华,吴谙诏,肖迪,蒋雪梅. 成人37例与儿童10例新型冠状病毒肺炎的临床特点比较[J]. 山东大学学报 (医学版), 2020, 58(10): 112-116.
[4] 王玲,曹海霞,张玲,张文娜,潘艳萍,史颖,张伟,崔峰. 淄博市一起新型冠状病毒肺炎家族聚集性疫情调查分析[J]. 山东大学学报 (医学版), 2020, 58(10): 100-104.
[5] 白尧,陈志军,宋姝璇,贺真,陈保忠,邵中军,刘昆. 西安市一起新型冠状病毒肺炎家族聚集性疫情调查分析[J]. 山东大学学报 (医学版), 2020, 58(10): 95-99.
[6] 张辉, 宋姝璇, 刘继锋, 贺真, 邵中军, 刘昆. 西安市新型冠状病毒肺炎疫情分析[J]. 山东大学学报 (医学版), 2020, 58(10): 89-94.
[7] 刘利利,贾艳,齐畅,朱雨辰,李春雨,佘凯丽,刘廷轩,李秀君. 基于时空统计方法分析温州市2020年1~3月新型冠状病毒肺炎的聚集性分布[J]. 山东大学学报 (医学版), 2020, 58(10): 82-88.
[8] 刘廷轩,齐畅,佘凯丽,贾艳,朱雨辰,李春雨,刘利利,王旭,章志华,李秀君. 河北省新型冠状病毒肺炎流行特征与时空聚集性分析[J]. 山东大学学报 (医学版), 2020, 58(10): 74-81.
[9] 贾艳,李春雨,刘利利,佘凯丽,刘廷轩,朱雨辰,齐畅,张丹丹,王旭,陈恩富,李秀君. 浙江省新型冠状病毒肺炎的流行特征与空间分析[J]. 山东大学学报 (医学版), 2020, 58(10): 66-73.
[10] 齐畅,朱雨辰,李春雨,刘利利,张丹丹,王旭,佘凯丽,陈鸣,康殿民,李秀君. 基于地理加权广义线性模型探索山东省新型冠状病毒肺炎的影响因素[J]. 山东大学学报 (医学版), 2020, 58(10): 53-59.
[11] 佘凯丽,张丹丹,齐畅,刘廷轩,贾艳,朱雨辰,李春雨,刘利利,王旭,苏虹,李秀君. 安徽省新型冠状病毒肺炎流行病学特征及其潜伏期估计[J]. 山东大学学报 (医学版), 2020, 58(10): 44-52.
[12] 李春雨,朱雨辰,齐畅,刘利利,张丹丹,王旭,徐学利,李秀君. 河南省信阳市新型冠状病毒肺炎的流行动态[J]. 山东大学学报 (医学版), 2020, 58(10): 38-43.
[13] 金新叶,卢珍珍,丁中兴,陈峰,彭志行. 武汉交通管制和集中隔离对新型冠状病毒肺炎疫情影响的动力学模型研究[J]. 山东大学学报 (医学版), 2020, 58(10): 25-31.
[14] 徐丽君,刘文辉,刘远,李美霞,罗雷,欧春泉. SEIQCR传染病模型的构建及在广州市新型冠状病毒肺炎公共卫生防控效果评估中的应用[J]. 山东大学学报 (医学版), 2020, 58(10): 20-24.
[15] 李秀君,李新楼,刘昆,赵晓波,马盟,孙博. 地理信息系统在新型冠状病毒肺炎疫情防控中的应用进展述评[J]. 山东大学学报 (医学版), 2020, 58(10): 13-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!