您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (10): 38-43.doi: 10.6040/j.issn.1671-7554.0.2020.0642

• • 上一篇    下一篇

河南省信阳市新型冠状病毒肺炎的流行动态

李春雨1,朱雨辰1,齐畅1,刘利利1,张丹丹1,王旭1,徐学利2,李秀君1   

  1. 1.山东大学齐鲁医学院公共卫生学院生物统计学系,山东 济南 250012;2.信阳市平桥区疾病预防控制中心,河南 信阳 464100
  • 发布日期:2020-10-08
  • 通讯作者: 李秀君. E-mail:xjli@sdu.edu.cn徐学利. E-mail:465037925@qq.com

Epidemic dynamics of COVID-19 in Xinyang City, Henan Province

LI Chunyu1, ZHU Yuchen1, QI Chang1, LIU Lili1, ZHANG Dandan1, WANG Xu1, XU Xueli2, LI Xiujun1   

  1. 1. Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. Xinyang Pingqiao District Center for Disease Control and Prevention, Xinyang 464100, Henan, China
  • Published:2020-10-08

摘要: 目的 探讨河南省信阳市新型冠状病毒肺炎(COVID-19)的流行动态,为优化疫情防控策略、评估干预措施效果提供科学依据。 方法 收集信阳市官方报道的COVID-19病例数据和个案信息,确定感染日期,并由此估计潜伏期,构建SEIR的传染病动力学模型,分析疾病发生发展规律,同时模拟分析改变防控措施实施时间时疫情的动态变化。 结果 信阳市累计报告COVID-19确诊病例274例,罹患率为3.72/10万;潜伏期的中位数为6.00(4.00,7.25)d。模型分析显示,信阳市疫情的基本再生数R0=2.86,采取防控措施后有效再生数降至0.29;若提前3 d采取防控措施,病例数降低50.5%,而推迟3 d采取防控措施,病例数将增加1倍。 结论 信阳市COVID-19疫情快速扩散,但在国家强有力的防控措施下疫情很快得到控制。

关键词: 新型冠状病毒肺炎, 流行动态, 传染病动力学模型, 基本再生数, 防控措施

Abstract: Objective To explore epidemic dynamics of coronavirus disease 2019(COVID-19)in Xinyang City so as to provide scientific basis for optimizing the prevention and control strategies and evaluating the effects of intervention. Methods The epidemic data of official report was collected. The date of infection was determined to estimate the incubation period. At the same time, the infectious disease dynamic model of SEIR was constructed to analyze the development of disease and the dynamic changes of epidemic situations when the time of implementing prevention and control policies was changed. Results A total of 274 cases were reported in Xinyang City, with the incidence rate of 3.72 out of 100 000. The median incubation period was 6.00(4.00, 7.25)days. Model analysis showed that the basic reproductive number(R0)was 2.86 and the effective reproductive number decreased to 0.29 after the prevention and control measures were taken. If prevention and control measures were taken three days in advance, the number of cases would reduce by 50.5%, while three days later, the number of cases would double. Conclusion The epidemic spread rapidly in Xinyang City, but was quickly controlled under the strong prevention and control measures of the state.

Key words: Coronavirus disease 2019, Epidemic feature, Dynamic model of infectious disease, Basic reproductive number, Prevention and control strategy

中图分类号: 

  • R183
[1] Chen N, Zhou M, Dong X. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 6736(20): 1-7.
[2] Guan WJ, Ni ZY,Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China[J]. N Engl J Med, 2020, 382(18): 1708-1720.
[3] WHO.Coronavirus disease(COVID-19)global epidemiological situation [EB/OL].(2020-08-24)[2020-08-26]. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200824-weekly-epi-update.pdf?sfvrsn=806986d1_4.
[4] Zhao S, Zhuang Z, Ran J, et al. The association between domestic train transportation and novel coronavirus outbreak in China, from 2019 to 2020: a data-driven correlational report[J]. Travel Med Infect Dis, 2020, 33: 101568. doi: 10.1016/j.tmaid.2020.101568.
[5] Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-NCoV outbreak originating in Wuhan, China: a modelling study[J]. Lancet, 2020, 6736(20): 1-9.
[6] 河南省统计局. 河南省统计年鉴2019[EB/OL].(2020-01-21)[2020-05-14]. http://oss.henan.gov.cn/sbgt-wztipt/attachment/hntjj/hntj/lib/tjnj/2019/zk/indexch.htm.
[7] Uttley L, Carroll C, Wong R, et al. Creutzfeldt-Jakob disease: a systematic review of global incidence, prevalence, infectivity, and incubation[J]. Lancet Infect Dis, 2020, 20(1): e2-e10. doi: 10.1016/S1473-3099(19)30615-2.
[8] Armenian HK, Lilienfeld AM. Incubation period of disease[J]. Epidemiol Rev, 1983, 5(1): 1-15.
[9] Linton NM, Kobayashi T, Yang Y, et al. Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data[J]. J Clin Med, 2020, 9(2): 538. doi: 10.3390/jcm9020538.
[10] Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus(2019-NCoV)infections among travelers from Wuhan, China, 20-28 January 2020[J]. Euro Surveill, 2020, 25(5): 2000062. doi: 10.2807/1560-7917.ES.2020.25.5.2000062.
[11] Li Q, Guan X, Wu P, et al. Earlytransmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia[J]. N Engl J Med, 2020, 382(13): 1199-1207.
[12] Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus(SARS-CoV2)[J]. Science, 2020, 368(6490): 489-493.
[13] Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus(COVID-19)infections[J]. Int J Infect Dis, 2020, 93: 284-286. doi: 10.1016/j.ijid.2020.02.060.
[14] Du Z, Xu X, Wu Y, et al. Serial interval of COVID-19 among publicly reported confirmed cases[J]. Emerg Infect Dis, 2020, 26(6): 1341-1343.
[15] Zhang J, Litvinova M, Wang W, et al. Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei Province, China: a descriptive and modelling study[J]. Lancet Infect Dis, 2020, 3099(20): 1-10.
[16] Yu P, Zhu J, Zhang Z, et al. A familial cluster of infection associated with the 2019 Novel Coronavirus indicating possible person-to-person transmission during the incubation period[J]. J Infect Dis, 2020, 221(11):1757-1761.
[17] Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients[J]. N Engl J Med, 2020, 382(12): 1177-1179.
[18] Pung R, Chiew CJ, Young BE, et al. Investigation of rhree clusters of COVID-19 in singapore: implications for surveillance and response measures[J]. Lancet, 2020, 19(20): 1-8.
[19] Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus(2019-NCoV), December 2019 to January 2020[J]. Euro Surveill, 2020, 25(4): 2000058. doi: 10.2807/1560-7917.ES.2020.25.4.2000058.
[20] Du Z, Wang L, Cauchemez S, et al. Risk for transportation of 2019 novel coronavirus disease from Wuhan to other cities in China[J]. Emerg Infect Dis, 2020, 26(5): 1049-1052.
[21] Ionides EL, Bretó C, King AA. Inference for nonlinear dynamical systems[J]. Proc Natl Acad Sci U S A, 2006, 103(49): 18438-18443.
[22] King AA, Ionides EL, Pascual M, et al. Inapparent infections and cholera dynamics[J]. Nature, 2008, 454(7206): 877-880.
[23] Pei S, Morone F, Liljeros F, et al. Inference and control of the nosocomial transmission of methicillin-resistant Staphylococcus aureus[J]. Elife, 2018, 7: e40977. doi: 10.7554/eLife.40977.
[24] He D, Ionides EL, King AA. Plug-and-play inference for disease dynamics: measles in large and small populations as a case study[J]. J R Soc Interface, 2010, 7(43): 271-283.
[25] Diekmann O, Heesterbeek JAP, Metz JAJ. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations[J]. J Math Biol, 1990, 28(4): 365-382.
[26] Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019(COVID-19)from publicly reported confirmed cases: estimation and application[J]. Ann Intern Med, 2020, 172(9): 577-582.
[27] Tian S, Hu N, Lou J, et al. Characteristics of COVID-19 infection in Beijing[J]. J Infect, 2020, 80(4): 401-406.
[1] 牛占丛,王彦霞,王晓亚,王晓庆,李亚轻,边竞. 新型冠状病毒肺炎2例报告[J]. 山东大学学报 (医学版), 2020, 58(10): 134-136.
[2] 李焕杰,欧兰香,陈虹,陈健,耿军,高志鹏,王岩,丁兴龙,陈振,朱之炜,刘伦琴,汪运山. 新型冠状病毒IgM-IgG抗体检测试剂盒的制备及对15例患者临床应用初试[J]. 山东大学学报 (医学版), 2020, 58(10): 120-126.
[3] 王彬,布学慧,孔祥亘,张照华,吴谙诏,肖迪,蒋雪梅. 成人37例与儿童10例新型冠状病毒肺炎的临床特点比较[J]. 山东大学学报 (医学版), 2020, 58(10): 112-116.
[4] 王玲,曹海霞,张玲,张文娜,潘艳萍,史颖,张伟,崔峰. 淄博市一起新型冠状病毒肺炎家族聚集性疫情调查分析[J]. 山东大学学报 (医学版), 2020, 58(10): 100-104.
[5] 白尧,陈志军,宋姝璇,贺真,陈保忠,邵中军,刘昆. 西安市一起新型冠状病毒肺炎家族聚集性疫情调查分析[J]. 山东大学学报 (医学版), 2020, 58(10): 95-99.
[6] 张辉, 宋姝璇, 刘继锋, 贺真, 邵中军, 刘昆. 西安市新型冠状病毒肺炎疫情分析[J]. 山东大学学报 (医学版), 2020, 58(10): 89-94.
[7] 刘利利,贾艳,齐畅,朱雨辰,李春雨,佘凯丽,刘廷轩,李秀君. 基于时空统计方法分析温州市2020年1~3月新型冠状病毒肺炎的聚集性分布[J]. 山东大学学报 (医学版), 2020, 58(10): 82-88.
[8] 刘廷轩,齐畅,佘凯丽,贾艳,朱雨辰,李春雨,刘利利,王旭,章志华,李秀君. 河北省新型冠状病毒肺炎流行特征与时空聚集性分析[J]. 山东大学学报 (医学版), 2020, 58(10): 74-81.
[9] 贾艳,李春雨,刘利利,佘凯丽,刘廷轩,朱雨辰,齐畅,张丹丹,王旭,陈恩富,李秀君. 浙江省新型冠状病毒肺炎的流行特征与空间分析[J]. 山东大学学报 (医学版), 2020, 58(10): 66-73.
[10] 齐畅,朱雨辰,李春雨,刘利利,张丹丹,王旭,佘凯丽,陈鸣,康殿民,李秀君. 基于地理加权广义线性模型探索山东省新型冠状病毒肺炎的影响因素[J]. 山东大学学报 (医学版), 2020, 58(10): 53-59.
[11] 佘凯丽,张丹丹,齐畅,刘廷轩,贾艳,朱雨辰,李春雨,刘利利,王旭,苏虹,李秀君. 安徽省新型冠状病毒肺炎流行病学特征及其潜伏期估计[J]. 山东大学学报 (医学版), 2020, 58(10): 44-52.
[12] 朱雨辰,李春雨,齐畅,王莹,刘利利,张丹丹,王旭,康殿民,李秀君. 基于泊松过程的山东省新型冠状病毒肺炎的再生数估计及流行动态分析[J]. 山东大学学报 (医学版), 2020, 58(10): 32-37.
[13] 金新叶,卢珍珍,丁中兴,陈峰,彭志行. 武汉交通管制和集中隔离对新型冠状病毒肺炎疫情影响的动力学模型研究[J]. 山东大学学报 (医学版), 2020, 58(10): 25-31.
[14] 徐丽君,刘文辉,刘远,李美霞,罗雷,欧春泉. SEIQCR传染病模型的构建及在广州市新型冠状病毒肺炎公共卫生防控效果评估中的应用[J]. 山东大学学报 (医学版), 2020, 58(10): 20-24.
[15] 李秀君,李新楼,刘昆,赵晓波,马盟,孙博. 地理信息系统在新型冠状病毒肺炎疫情防控中的应用进展述评[J]. 山东大学学报 (医学版), 2020, 58(10): 13-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!