山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (5): 15-21.doi: 10.6040/j.issn.1671-7554.0.2021.0368
Xi ZHOU*(),Muhan HUANG*(),Yujie REN,Yang QIU
摘要:
新型冠状病毒(SARS-CoV-2)感染所引起的新型冠状病毒肺炎(COVID-19)疫情已成为近一个世纪以来最严重的全球大流行传染病,在世界范围内造成了巨大的生命与社会经济损失。天然免疫是机体抵御病原入侵的第一道防线。SARS-CoV-2能通过多种机制拮抗并逃逸天然免疫,这些免疫逃逸机制是其致病机制的重要组成因素。同时,SARS-CoV-2感染所引起的疾病与其激发的过度炎症反应密切相关。论文就疫情暴发以来SARS-CoV-2感染与天然免疫及炎症反应的相互作用及致病机制作一简单综述。
中图分类号:
1 |
Jiang S , Shi Z , Shu Y , et al. A distinct name is needed for the new coronavirus[J]. Lancet, 2020, 395 (10228): 949.
doi: 10.1016/S0140-6736(20)30419-0 |
2 | Hu B , Guo H , Zhou P , et al. Characteristics of SARS-CoV-2 and COVID-19[J]. Nat Rev Microbiol, 2020, 19 (3): 141- 154. |
3 |
Lu R , Zhao X , Li J , et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding[J]. Lancet, 2020, 395 (10224): 565- 574.
doi: 10.1016/S0140-6736(20)30251-8 |
4 |
Guan WJ , Ni ZY , Hu Y , et al. Clinical characteristics of coronavirus disease 2019 in China[J]. N Engl J Med, 2020, 382 (18): 1708- 1720.
doi: 10.1056/NEJMoa2002032 |
5 |
Chen N , Zhou M , Dong X , et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 395 (10223): 507- 513.
doi: 10.1016/S0140-6736(20)30211-7 |
6 |
Xydakis MS , Mobaraki PD , Holbrook EH , et al. Smell and taste dysfunction in patients with COVID-19[J]. Lancet Infect Dis, 2020, 20 (9): 1015- 1016.
doi: 10.1016/S1473-3099(20)30293-0 |
7 |
Huang C , Wang Y , Li X , et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395 (10223): 497- 506.
doi: 10.1016/S0140-6736(20)30183-5 |
8 |
Li W , Moore MJ , Vasilieva N , et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus[J]. Nature, 2003, 426 (6965): 450- 454.
doi: 10.1038/nature02145 |
9 |
Hoffmann M , Kleine-Weber H , Schroeder S , et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181 (2): 271- 280.e8.
doi: 10.1016/j.cell.2020.02.052 |
10 |
Cantuti-Castelvetri L , Ojha R , Pedro LD , et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity[J]. Science, 2020, 370 (6518): 856- 860.
doi: 10.1126/science.abd2985 |
11 |
Ou X , Liu Y , Lei X , et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV[J]. Nat Commun, 2020, 11 (1): 1620.
doi: 10.1038/s41467-020-15562-9 |
12 |
Zielger CGK , Allon SJ , Nyquist SK , et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues[J]. Cell, 2020, 181 (5): 1016- 1035.e19.
doi: 10.1016/j.cell.2020.04.035 |
13 |
Onabajo OO , Banday AR , Stanifer ML , et al. Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor[J]. Nat Genet, 2020, 52 (12): 1283- 1293.
doi: 10.1038/s41588-020-00731-9 |
14 |
Acharya D , Liu G , Gack MU . Dysregulation of type I interferon responses in COVID-19[J]. Nat Rev Immunol, 2020, 20 (7): 397- 398.
doi: 10.1038/s41577-020-0346-x |
15 |
Xia H , Cao Z , Xie X , et al. Evasion of type I interferon by SARS-CoV-2[J]. Cell Rep, 2020, 33 (1): 108234.
doi: 10.1016/j.celrep.2020.108234 |
16 |
Lei X , Dong X , Ma R , et al. Activation and evasion of type I interferon responses by SARS-CoV-2[J]. Nat Commun, 2020, 11 (1): 3810.
doi: 10.1038/s41467-020-17665-9 |
17 |
Konno Y , Kimura I , Uriu K , et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant[J]. Cell Rep, 2020, 32 (12): 108185.
doi: 10.1016/j.celrep.2020.108185 |
18 |
Mu J , Fang Y , Yang Q , et al. SARS-CoV-2 N protein antagonizes type I interferon signaling by suppressing phosphorylation and nuclear translocation of STAT1 and STAT2[J]. Cell Discov, 2020, 6, 65.
doi: 10.1038/s41421-020-00208-3 |
19 |
Zheng Y , Zhuang MW , Han L , et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling[J]. Signal Transduct Target Ther, 2020, 5 (1): 299.
doi: 10.1038/s41392-020-00438-7 |
20 |
Israelow B , Song E , Mao T , et al. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling[J]. J Exp Med, 2020, 217 (12): e20201241.
doi: 10.1084/jem.20201241 |
21 |
Lokugamaga KG , Hage A , Vries M , et al. Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV[J]. J Virol, 2020, 94 (23): e01410- 20.
doi: 10.1128/JVI.01410-20 |
22 |
Bastard P , Rosen LB , Zhang Q , et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19[J]. Science, 2020, 370 (6515): eabd4585.
doi: 10.1126/science.abd4585 |
23 |
Vaninov N . In the eye of the COVID-19 cytokine storm[J]. Nat Rev Immunol, 2020, 20 (5): 277.
doi: 10.1038/s41577-020-0305-6 |
24 |
Mehta P , McAuley DF , Brown M , et al. COVID-19: consider cytokine storm syndromes and immunosuppression[J]. Lancet, 2020, 395 (10229): 1033- 1034.
doi: 10.1016/S0140-6736(20)30628-0 |
25 |
Xu ZS , Shu T , Kang L , et al. Temporal profiling of plasma cytokines, chemokines and growth factors from mild, severe and fatal COVID-19 patients[J]. Signal Transduct Target Ther, 2020, 5 (1): 100.
doi: 10.1038/s41392-020-0211-1 |
26 |
Blanco-Melo D , Nilsson-Payant BE , Liu WC , et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19[J]. Cell, 2020, 181 (5): 1036- 1045.e9.
doi: 10.1016/j.cell.2020.04.026 |
27 |
Hadjadj J , Yatim N , Barnabei L , et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients[J]. Science, 2020, 369 (6504): 718- 724.
doi: 10.1126/science.abc6027 |
28 |
Wang C , Xu J , Wang S , et al. Imaging mass cytometric analysis of postmortem tissues reveals dysregulated immune cell and cytokine responses in multiple organs of COVID-19 patients[J]. Front Microbiol, 2020, 11, 600989.
doi: 10.3389/fmicb.2020.600989 |
29 |
Sinha P , Matthay MA , Calfee CS , et al. Is a "cytokine storm" relevant to COVID-19?[J]. JAMA Intern Med, 2020, 180 (9): 1152- 1154.
doi: 10.1001/jamainternmed.2020.3313 |
30 |
Shu T , Ning W , Wu D , et al. Plasma proteomics identify biomarkers and pathogenesis of COVID-19[J]. Immunity, 2020, 53 (5): 1108- 1122.e5.
doi: 10.1016/j.immuni.2020.10.008 |
31 |
Regn M , Laggerbauer B , Jentzsch C , et al. Peptidase inhibitor 16 is a membrane-tethered regulator of chemerin processing in the myocardium[J]. J Mol Cell Cardiol, 2016, 99, 57- 64.
doi: 10.1016/j.yjmcc.2016.08.010 |
32 |
Wu D , Shu T , Yang X , et al. Plasma metabolomic and lipidomic alterations associated with COVID-19[J]. Natl Sci Rev, 2020, 7, 1157- 1168.
doi: 10.1101/2020.04.05.20053819 |
33 |
Shen B , Yi X , Sun Y , et al. Proteomic and metabolomic characterization of COVID-19 patient sera[J]. Cell, 2020, 182 (1): 59- 72.e15.
doi: 10.1016/j.cell.2020.05.032 |
34 |
Ranucci M , Ballotta A , Dadda UD , et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome[J]. J Thromb Haemost, 2020, 18 (7): 1747- 1751.
doi: 10.1111/jth.14854 |
35 |
Xu Z , Shi L , Wang Y , et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. Lancet Respir Med, 2020, 8 (4): 420- 422.
doi: 10.1016/S2213-2600(20)30076-X |
36 |
Wang N , Zhang Y , Zhu L , et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients[J]. Cell Host Microbe, 2020, 28 (3): 455- 464.e2.
doi: 10.1016/j.chom.2020.07.005 |
37 |
Zhou Q , Chen V , Shannon CP , et al. Interferon-α2b treatment for COVID-19[J]. Front Immunol, 2020, 11, 1061.
doi: 10.3389/fimmu.2020.01061 |
38 |
Zhou Y , Fu B , Zheng X , et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients[J]. Natl Sci Rev, 2020, 7 (6): 998- 1002.
doi: 10.1093/nsr/nwaa041 |
39 |
Zhou Y , Wei H . Tocilizumab is recommended for the treatment of severe COVID-19[J]. EBioMedicine, 2020, 61, 103045.
doi: 10.1016/j.ebiom.2020.103045 |
40 |
Xu X , Han M , Li T , et al. Effective treatment of severe COVID-19 patients with tocilizumab[J]. Proc Natl Acad Sci U S A, 2020, 117 (20): 10970- 10975.
doi: 10.1073/pnas.2005615117 |
41 |
Guo C , Li B , Ma H , et al. Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm[J]. Nat Commun, 2020, 11 (1): 3924.
doi: 10.1038/s41467-020-17834-w |
42 |
Wang J , Jiang M , Chen X , et al. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts[J]. J Leukoc Biol, 2020, 108 (1): 17- 41.
doi: 10.1002/JLB.3COVR0520-272R |
43 |
Bengtsson AA , Sturfelt G , Lood C , et al. Pharmacokinetics, tolerability, and preliminary efficacy of paquinimod (ABR-215757), a new quinoline-3-carboxamide derivative: studies in lupus-prone mice and a multicenter, randomized, double-blind, placebo-controlled, repeat-dose, dose-ranging study in patients with systemic lupus erythematosus[J]. Arthritis Rheum, 2012, 64 (5): 1579- 1588.
doi: 10.1002/art.33493 |
44 |
Bjrk P , Bjrk A , Vogl T , et al. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides[J]. PLoS Biol, 2009, 7 (4): e97.
doi: 10.1371/journal.pbio.1000097 |
45 |
Guo QR , Zhao YC , Li JH , et al. Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19[J]. Cell Host Microbe, 2021, 29 (2): 222- 235.e4.
doi: 10.1016/j.chom.2020.12.016 |
[1] | 董宏杰,张俊梅,王帅,王宏伟,张坤迪,胡玮,谢晓鸿,谢时灵,谷立川. 新型冠状病毒混合样品检测研究[J]. 山东大学学报 (医学版), 2021, 59(4): 1-5. |
[2] | 于莹,张功,刘晶,颜世童,韩涛,黄海量. 基于网络药理学和分子对接方法探析黄芪预防新型冠状病毒肺炎的潜在作用机制[J]. 山东大学学报 (医学版), 2021, 59(4): 6-16. |
[3] | 闵傲雪,朱天瑞,张凤,王冉冉,李晓红. A151对糖氧剥夺和脂多糖诱导的BV-2细胞极化的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 1-9. |
[4] | 任敏敏,王广梅,张丽,杨瑶瑶,封丹珺. 335名抗疫一线护理人员心理弹性对共情疲劳的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 88-94. |
[5] | 余雪源,张硕,燕芳芳,苏德振. 采用清肺排毒汤联合西药43例与单用西药46例的新型冠状病毒肺炎临床疗效比较[J]. 山东大学学报 (医学版), 2020, 58(12): 47-53. |
[6] | 牛占丛,王彦霞,王晓亚,王晓庆,李亚轻,边竞. 新型冠状病毒肺炎2例报告[J]. 山东大学学报 (医学版), 2020, 58(10): 134-136. |
[7] | 李秀君,李新楼,刘昆,赵晓波,马盟,孙博. 地理信息系统在新型冠状病毒肺炎疫情防控中的应用进展述评[J]. 山东大学学报 (医学版), 2020, 58(10): 13-19. |
[8] | 徐丽君, 刘文辉, 刘远, 李美霞, 罗雷, 欧春泉. SEIQCR传染病模型的构建及在广州市新型冠状病毒肺炎公共卫生防控效果评估中的应用[J]. 山东大学学报 (医学版), 2020, 58(10): 20-24. |
[9] | 金新叶,卢珍珍,丁中兴,陈峰,彭志行. 武汉交通管制和集中隔离对新型冠状病毒肺炎疫情影响的动力学模型研究[J]. 山东大学学报 (医学版), 2020, 58(10): 25-31. |
[10] | 朱雨辰,李春雨,齐畅,王莹,刘利利,张丹丹,王旭,康殿民,李秀君. 基于泊松过程的山东省新型冠状病毒肺炎的再生数估计及流行动态分析[J]. 山东大学学报 (医学版), 2020, 58(10): 32-37. |
[11] | 李春雨,朱雨辰,齐畅,刘利利,张丹丹,王旭,徐学利,李秀君. 河南省信阳市新型冠状病毒肺炎的流行动态[J]. 山东大学学报 (医学版), 2020, 58(10): 38-43. |
[12] | 佘凯丽,张丹丹,齐畅,刘廷轩,贾艳,朱雨辰,李春雨,刘利利,王旭,苏虹,李秀君. 安徽省新型冠状病毒肺炎流行病学特征及其潜伏期估计[J]. 山东大学学报 (医学版), 2020, 58(10): 44-52. |
[13] | 齐畅,朱雨辰,李春雨,刘利利,张丹丹,王旭,佘凯丽,陈鸣,康殿民,李秀君. 基于地理加权广义线性模型探索山东省新型冠状病毒肺炎的影响因素[J]. 山东大学学报 (医学版), 2020, 58(10): 53-59. |
[14] | 贾艳,李春雨,刘利利,佘凯丽,刘廷轩,朱雨辰,齐畅,张丹丹,王旭,陈恩富,李秀君. 浙江省新型冠状病毒肺炎的流行特征与空间分析[J]. 山东大学学报 (医学版), 2020, 58(10): 66-73. |
[15] | 刘廷轩,齐畅,佘凯丽,贾艳,朱雨辰,李春雨,刘利利,王旭,章志华,李秀君. 河北省新型冠状病毒肺炎流行特征与时空聚集性分析[J]. 山东大学学报 (医学版), 2020, 58(10): 74-81. |
|