山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (3): 1-9.doi: 10.6040/j.issn.1671-7554.0.2020.1499
• 基础医学 • 下一篇
闵傲雪,朱天瑞,张凤,王冉冉,李晓红
MIN Aoxue, ZHU Tianrui, ZHANG Feng, WANG Ranran, LI Xiaohong
摘要: 目的 探讨抑制性寡核苷酸A151治疗对糖氧剥夺(OGD)和脂多糖(LPS)诱导的小胶质细胞M1/M2极化的影响。 方法 倒置显微镜下观察A151治疗对BV-2细胞形态改变的影响。ELISA检测细胞上清液中细胞因子含量。RT-PCR检测细胞因子转录水平。Western blotting检测小胶质细胞M1表型、M2表型表面标志物的表达,检测NLRP3炎症小体的表达。免疫荧光检测小胶质细胞M1表型、M2表型表面标志物的表达。 结果 A151可抑制LPS和OGD共同刺激引起的BV-2细胞形态变化。A151能下调小胶质细胞M1表型表面标志物和高表达的细胞因子诱导型一氧化氮合酶(iNOS)、CD16/CD32、肿瘤坏死因子-α(TNF-α)、白介素-1β(IL-1β)(P均<0.001),下调TNF-α mRNA、IL-1β mRNA的转录水平(P均<0.001)。上调小胶质细胞M2表型表面标志物和高表达的细胞因子: 精氨酸酶-1(Arg-1)、CD206、白介素-10(IL-10)、白介素-4(IL-4)(PArg-1<0.001,PCD206<0.001,PIL-10<0.001,PIL-4=0.046),上调IL-10 mRNA、IL-4 mRNA转录水平(P均<0.001),下调NLRP3炎症小体表达(P均<0.001)。 结论 A151通过抑制NLRP3炎症小体的活化,促使小胶质细胞从M1表型向M2表型的极化,发挥调节炎症的作用。
中图分类号:
[1] Barthels D, Das H. Current advances in ischemic stroke research and therapies [J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(4):165260. doi:10.1016/j.bbadis.2018.09.012. [2] Andrabi SS, Parvez S, Tabassum H. Ischemic stroke and mitochondria: mechanisms and targets [J]. Protoplasma, 2020, 257(2): 335-343. [3] Jian Z, Liu R, Zhu X, et al. The involvement and therapy target of immune cells after ischemic stroke [J]. Front Immunol, 2019, 10: 2167. doi: 10.3389/fimmu.2019.02167. [4] Anrather J, ladecola C. Inflammation and stroke: an overview [J]. Neurotherapeutics, 2016, 13(4): 661-670. [5] 王蕾, 张毅. 小胶质细胞在成年人大脑中的生理功能研究进展[J]. 生物医学工程与临床, 2019, 23(1): 102-104. WANG Lei, ZHANG Yi. Research progress on the physiological functions of microglia in the adult brain [J]. Biomedical Engineering and Clinical Medicine, 2019, 23(1):1 02-104. [6] Li LZ, Huang YY, Yang ZH, et al. Potential microglia-based interventions for stroke [J]. CNS Neurosci Ther, 2020, 26(3): 288-296. [7] 陈浩伦, 吴春云. 脑损伤后小胶质细胞极化现象的研究进展[J].神经解剖学杂志, 2020, 36(2): 224-228. CHEN Haolun, WU Chunyun. Research progress on polarization of microglia after brain injury [J]. Chinese Journal of Neuroanatomy, 2020, 36(2): 224-228. [8] Shampay J, Szostak JW, Blackburn EH. DNA sequences of telomeres maintained in yeast [J]. Nature, 1984, 310(5973): 154-157. [9] Yamada H, Ishii KJ, Klinman DM. Suppressive oligodeoxynucleotides inhibit CpG-induced inflammation of the mouse lung [J]. Crit Care Med, 2004, 32(10): 2045-2049. [10] Steinhagen F, Zillinger T, Peukert K, et al. Suppressive oligodeoxynucleotides containing TTAGGG motifs inhibit cGAS activation in human monocytes [J]. Eur J Immunol, 2018, 48(4): 605-611. [11] Zeuner RA, Verthelyi D, Gursel M, et al. Influence of stimulatory and suppressive DNA motifs on host susceptibility to inflammatory arthritis [J]. Arthritis Rheum, 2003, 48(6): 1701-1707. [12] Shirota H, Gursel I, Gursel M, et al. Suppressive oligodeoxynucleotides protect mice from lethal endotoxic shock [J]. J Immunol, 2005, 174(8): 4579-4583. [13] Li N, Liu YH, Li SL, et al. Protective role of synthetic oligodeoxynucleotides expressing immunosuppressive TTAGGG motifs in concanavalin A-induced hepatitis [J]. Immunol Lett, 2013, 151(1-2): 54-60. [14] Dong L, Ito S, Ishii KJ, et al. Suppressive oligodeoxynucleotides delay the onset of glomerulonephritis and prolong survival in lupus-prone NZB x NZW mice [J]. Arthritis Rheum, 2005, 52(2): 651-658. [15] Zhao J, Mou Y, Bernstock JD, et al. Synthetic oligodeoxynucleotides containing multiple telemeric TTAGGG motifs suppress inflammasome activity in macrophages subjected to oxygen and glucose deprivation and reduce ischemic brain injury in stroke-prone spontaneously hypertensive rats [J]. PLoS One, 2015, 10(10): e0140772. doi: 10.1371/journal.pone.0140772. [16] Arikh NS, Merkler AE, Iadecola C. Inflammation, autoimmunity, infection, and stroke: epidemiology and lessons from therapeutic intervention [J]. Stroke, 2020, 51(3): 711-718. [17] Sakai S, Shichita T. Inflammation and neural repair after ischemic brain injury [J]. Neurochem Int, 2019, 130: 104316. doi: 10.1016/j.neuint.2018.10.013. [18] Zhang S. Microglial activation after ischaemic stroke [J]. Stroke Vasc Neurol, 2019, 4(2): 71-74. [19] Wang J, Xing H, Wan L, et al. Treatment targets for M2 microglia polarization in ischemic stroke [J]. Biomed Pharmacother, 2018, 105: 518-525. doi: 10.1016/j.biopha.2018.05.143. [20] Eldahshan W, Fagan SC, Ergul A. Inflammation within the neurovascular unit: focus on microglia for stroke injury and recovery [J]. Pharmacol Res, 2019, 147: 104349. doi: 10.1016/j.phrs.2019.104349. [21] Rawlinson C, Jenkins S, Thei L, et al. Post-ischaemic immunological response in the brain: targeting microglia in ischaemic stroke therapy [J]. Brain Sci, 2020, 10(3): 159. doi: 10.3390/brainsci10030159. [22] Xiao L, Zheng H, Li J, et al. Neuroinflammation mediated by NLRP3 inflammasome after intracerebral hemorrhage and potential therapeutic targets [J]. Mol Neurobiol, 2020, 57(12): 5130-5149. [23] 骆嵩, 屈洪党, 马博. 缺血性脑卒中NLRP3炎症小体活化介导M1小胶质细胞焦亡机制的研究进展[J].齐齐哈尔医学院学报, 2020, 41(1): 82-84. LUO Song, QU Hongdang, MA Bo. Research progress on the mechanism of NLRP3 inflammasome activation mediated M1 microglia pyrolysis in ischemic stroke [J]. Journal of Qiqihar Medical College, 2020, 41(1): 82-84. [24] Gursel I, Gursel M, Yamada H, et al. Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation [J]. J Immunol, 2003, 171(3): 1393-1400. [25] Fouquerel E, Parikh D, Opresko P. DNA damage processing at telomeres: The ends justify the means[J]. DNA Repair(Amst), 2016, 44: 159-168. doi: 10.1016/j.dnarep.2016.05.022. [26] Tan J, Lan L. The DNA secondary structures at telomeres and genome instability [J]. Cell Biosci, 2020, 10:47. doi: 10.1186/s13578-020-00409-z. |
[1] | 邹品衡,陈添果,胡康,李伟才. 过表达miR-27a对急性脑梗死大鼠海马神经元损伤的影响及其机制[J]. 山东大学学报 (医学版), 2022, 60(9): 59-66. |
[2] | 李锐,石存现,于翠翠. 右美托咪定对30例体外循环患者肠道屏障损伤的影响[J]. 山东大学学报 (医学版), 2022, 60(7): 83-88. |
[3] | 周溪,黄霂晗,任玉洁,邱洋. 新型冠状病毒感染与天然免疫及炎症反应[J]. 山东大学学报 (医学版), 2021, 59(5): 15-21. |
[4] | 张栌丹,丁晓玲,崔舒悦,程晨,魏福兰,丁刚. 牙周膜干细胞调节巨噬细胞功能的体外研究[J]. 山东大学学报 (医学版), 2021, 59(3): 35-40. |
[5] | 杨佳,张曼,陈凯明,曹曦. miR-146a经TLR4/MyD88途径加速巨噬细胞迁移所致动脉硬化的作用机制[J]. 山东大学学报 (医学版), 2021, 59(11): 1-7. |
[6] | 高金梅,黄映波,冯珍珍. 单核细胞趋化蛋白-1对67例全身炎症反应综合征患者的诊断价值[J]. 山东大学学报 (医学版), 2021, 59(10): 75-79. |
[7] | 郭配,李秀华,张晓韬,何天齐,朱梅佳,唐吉友,赵张宁,毛飞. 伴有睡眠障碍帕金森病患者的睡眠特征及其影响因素[J]. 山东大学学报 (医学版), 2018, 56(4): 76-80. |
[8] | 张同超,王志萍. 二硫化碳通过改变卵巢黄体巨噬细胞极化和功能导致胚胎植入障碍[J]. 山东大学学报 (医学版), 2018, 56(2): 80-87. |
[9] | 陈攀,蒋春霞,雷艺. 2型糖尿病患者外周血突触融合蛋白8表达与慢性炎症、糖脂代谢的相关性[J]. 山东大学学报 (医学版), 2018, 56(12): 26-32. |
[10] | 张栾,陈欧,栾云,朱晓波,陈元,王一彪. Gemigliptin对野百合碱诱导的肺动脉高压大鼠治疗作用及炎症因子的影响[J]. 山东大学学报(医学版), 2017, 55(5): 19-22. |
[11] | 孙鹏飞,孟晓,张凯,黎莉. 抵抗素样分子 β在动脉粥样硬化斑块稳定性中的作用[J]. 山东大学学报(医学版), 2016, 54(3): 1-4. |
[12] | 王娜,陈乃耀. 脐带间充质干细胞对小胶质细胞增殖及活化的影响[J]. 山东大学学报(医学版), 2016, 54(10): 16-20. |
[13] | 李少伟, 刘宗正, 刘春霞, 张焱如, 周欢敏. 葡萄籽原花青素对小鼠脂肪肝模型缺血再灌注造成的急性肝损伤的保护作用[J]. 山东大学学报(医学版), 2015, 53(9): 41-46. |
[14] | 李桂婷, 张蕊, 邹珊珊, 丁明. 氯胺酮对幼年小鼠空间学习记忆功能及海马脑区TSPO蛋白的影响[J]. 山东大学学报(医学版), 2015, 53(4): 55-60. |
[15] | 袁睿莉, 孙若鹏, 刘心洁. Caspase-1对小胶质细胞中NOD2介导的免疫耐受的调节[J]. 山东大学学报(医学版), 2015, 53(2): 34-38. |
|