您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2021, Vol. 59 ›› Issue (5): 15-21.doi: 10.6040/j.issn.1671-7554.0.2021.0368

• 医学病毒的基础与临床研究进展专题 • 上一篇    下一篇

新型冠状病毒感染与天然免疫及炎症反应

周溪*(),黄霂晗*(),任玉洁,邱洋   

  1. 中国科学院武汉病毒研究所, 病毒学国家重点实验室, 湖北 武汉 430071
  • 收稿日期:2021-04-02 出版日期:2021-05-10 发布日期:2021-06-01
  • 通讯作者: 周溪,黄霂晗 E-mail:zhouxi@wh.iov.cn;huangmuhan@wh.iov.cn
  • 作者简介:周溪,中国科学院武汉病毒研究所研究员、博士研究生导师、所长助理,病毒学国家重点实验室副主任。目前兼任中国微生物学会病毒学专业委员会青年委员会副主委、湖北省微生物学会副理事长、武汉微生物学会副理事长、湖北省生物工程学会常务理事; 兼任武汉大学与中国科学技术大学博士生导师。获得基金委优秀青年科学基金、英国皇家学会“牛顿高级学者”、科技部863青年科学家、湖北省“杰青”、武汉大学“珞珈学者”特聘教授、中国微生物学会“克里斯托弗·梅里埃优秀青年病毒学论文奖”一等奖等荣誉。长期致力于RNA病毒的基础与应用基础研究,围绕重要RNA病毒(如肠道病毒、冠状病毒、黄病毒等),主要聚焦在RNA病毒的感染、复制与致病机制,以及RNA病毒与宿主相互作用领域,取得了突出的学术成绩,在领域内产生了一定的影响。以课题负责人身份承担国家传染病重大专项、国家973计划、中国科学院战略先导专项、中国科学院国际合作局国际伙伴计划、国家自然科学基金等多项课题。作为通讯(或共同通讯)作者在国际权威或主流学术期刊发表论文40余篇(其中近5年来28篇); 申请国内发明专利9项、国际发明专利4项。在新型冠状病毒抗疫期间,围绕新型冠状病毒致病机制进行了大量工作,取得了一系列重要进展,获得“中国科学院优秀共产党员”称号
  • 基金资助:
    国家科技重大专项(2018ZX10101004)

SARS-CoV-2 infection, innate immunity and inflammatory response

Xi ZHOU*(),Muhan HUANG*(),Yujie REN,Yang QIU   

  1. State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
  • Received:2021-04-02 Online:2021-05-10 Published:2021-06-01
  • Contact: Xi ZHOU,Muhan HUANG E-mail:zhouxi@wh.iov.cn;huangmuhan@wh.iov.cn

摘要:

新型冠状病毒(SARS-CoV-2)感染所引起的新型冠状病毒肺炎(COVID-19)疫情已成为近一个世纪以来最严重的全球大流行传染病,在世界范围内造成了巨大的生命与社会经济损失。天然免疫是机体抵御病原入侵的第一道防线。SARS-CoV-2能通过多种机制拮抗并逃逸天然免疫,这些免疫逃逸机制是其致病机制的重要组成因素。同时,SARS-CoV-2感染所引起的疾病与其激发的过度炎症反应密切相关。论文就疫情暴发以来SARS-CoV-2感染与天然免疫及炎症反应的相互作用及致病机制作一简单综述。

关键词: 新型冠状病毒, 新型冠状病毒肺炎, 天然免疫, 免疫逃逸, 炎症反应, 细胞因子风暴

Abstract:

Coronavirus disease 2019 (COVID-19), which is caused by a novel coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has become the worst pandemic and public health crisis across the globe once a century. This pandemic has caused huge losses in both human lives and global economy. Innate immunity is the first line of defense against pathogenic invasions. Extensive studies by scientists in China and the world have reported that SARS-CoV-2 can employ multiple strategies to evade host innate immunity, and such immune evasion mechanisms have become critical contributing factors for the pathogenicity of SARS-CoV-2. On the other hand, the pathogenesis of COVID-19 has been found to be closely relevant with the pro-inflammatory responses induced by SARS-CoV-2 infection in humans. This paper provides a brief review to the relationship between SARS-CoV-2 infection and innate immunity as well as inflammation.

Key words: Severe acute respiratory syndrome coronavirus-2, Coronavirus disease 2019, Innate immunity, Immune evasion, Inflammation, Cytokine storm

中图分类号: 

  • Q93
1 Jiang S , Shi Z , Shu Y , et al. A distinct name is needed for the new coronavirus[J]. Lancet, 2020, 395 (10228): 949.
doi: 10.1016/S0140-6736(20)30419-0
2 Hu B , Guo H , Zhou P , et al. Characteristics of SARS-CoV-2 and COVID-19[J]. Nat Rev Microbiol, 2020, 19 (3): 141- 154.
3 Lu R , Zhao X , Li J , et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding[J]. Lancet, 2020, 395 (10224): 565- 574.
doi: 10.1016/S0140-6736(20)30251-8
4 Guan WJ , Ni ZY , Hu Y , et al. Clinical characteristics of coronavirus disease 2019 in China[J]. N Engl J Med, 2020, 382 (18): 1708- 1720.
doi: 10.1056/NEJMoa2002032
5 Chen N , Zhou M , Dong X , et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 395 (10223): 507- 513.
doi: 10.1016/S0140-6736(20)30211-7
6 Xydakis MS , Mobaraki PD , Holbrook EH , et al. Smell and taste dysfunction in patients with COVID-19[J]. Lancet Infect Dis, 2020, 20 (9): 1015- 1016.
doi: 10.1016/S1473-3099(20)30293-0
7 Huang C , Wang Y , Li X , et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395 (10223): 497- 506.
doi: 10.1016/S0140-6736(20)30183-5
8 Li W , Moore MJ , Vasilieva N , et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus[J]. Nature, 2003, 426 (6965): 450- 454.
doi: 10.1038/nature02145
9 Hoffmann M , Kleine-Weber H , Schroeder S , et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181 (2): 271- 280.e8.
doi: 10.1016/j.cell.2020.02.052
10 Cantuti-Castelvetri L , Ojha R , Pedro LD , et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity[J]. Science, 2020, 370 (6518): 856- 860.
doi: 10.1126/science.abd2985
11 Ou X , Liu Y , Lei X , et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV[J]. Nat Commun, 2020, 11 (1): 1620.
doi: 10.1038/s41467-020-15562-9
12 Zielger CGK , Allon SJ , Nyquist SK , et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues[J]. Cell, 2020, 181 (5): 1016- 1035.e19.
doi: 10.1016/j.cell.2020.04.035
13 Onabajo OO , Banday AR , Stanifer ML , et al. Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor[J]. Nat Genet, 2020, 52 (12): 1283- 1293.
doi: 10.1038/s41588-020-00731-9
14 Acharya D , Liu G , Gack MU . Dysregulation of type I interferon responses in COVID-19[J]. Nat Rev Immunol, 2020, 20 (7): 397- 398.
doi: 10.1038/s41577-020-0346-x
15 Xia H , Cao Z , Xie X , et al. Evasion of type I interferon by SARS-CoV-2[J]. Cell Rep, 2020, 33 (1): 108234.
doi: 10.1016/j.celrep.2020.108234
16 Lei X , Dong X , Ma R , et al. Activation and evasion of type I interferon responses by SARS-CoV-2[J]. Nat Commun, 2020, 11 (1): 3810.
doi: 10.1038/s41467-020-17665-9
17 Konno Y , Kimura I , Uriu K , et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant[J]. Cell Rep, 2020, 32 (12): 108185.
doi: 10.1016/j.celrep.2020.108185
18 Mu J , Fang Y , Yang Q , et al. SARS-CoV-2 N protein antagonizes type I interferon signaling by suppressing phosphorylation and nuclear translocation of STAT1 and STAT2[J]. Cell Discov, 2020, 6, 65.
doi: 10.1038/s41421-020-00208-3
19 Zheng Y , Zhuang MW , Han L , et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling[J]. Signal Transduct Target Ther, 2020, 5 (1): 299.
doi: 10.1038/s41392-020-00438-7
20 Israelow B , Song E , Mao T , et al. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling[J]. J Exp Med, 2020, 217 (12): e20201241.
doi: 10.1084/jem.20201241
21 Lokugamaga KG , Hage A , Vries M , et al. Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV[J]. J Virol, 2020, 94 (23): e01410- 20.
doi: 10.1128/JVI.01410-20
22 Bastard P , Rosen LB , Zhang Q , et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19[J]. Science, 2020, 370 (6515): eabd4585.
doi: 10.1126/science.abd4585
23 Vaninov N . In the eye of the COVID-19 cytokine storm[J]. Nat Rev Immunol, 2020, 20 (5): 277.
doi: 10.1038/s41577-020-0305-6
24 Mehta P , McAuley DF , Brown M , et al. COVID-19: consider cytokine storm syndromes and immunosuppression[J]. Lancet, 2020, 395 (10229): 1033- 1034.
doi: 10.1016/S0140-6736(20)30628-0
25 Xu ZS , Shu T , Kang L , et al. Temporal profiling of plasma cytokines, chemokines and growth factors from mild, severe and fatal COVID-19 patients[J]. Signal Transduct Target Ther, 2020, 5 (1): 100.
doi: 10.1038/s41392-020-0211-1
26 Blanco-Melo D , Nilsson-Payant BE , Liu WC , et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19[J]. Cell, 2020, 181 (5): 1036- 1045.e9.
doi: 10.1016/j.cell.2020.04.026
27 Hadjadj J , Yatim N , Barnabei L , et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients[J]. Science, 2020, 369 (6504): 718- 724.
doi: 10.1126/science.abc6027
28 Wang C , Xu J , Wang S , et al. Imaging mass cytometric analysis of postmortem tissues reveals dysregulated immune cell and cytokine responses in multiple organs of COVID-19 patients[J]. Front Microbiol, 2020, 11, 600989.
doi: 10.3389/fmicb.2020.600989
29 Sinha P , Matthay MA , Calfee CS , et al. Is a "cytokine storm" relevant to COVID-19?[J]. JAMA Intern Med, 2020, 180 (9): 1152- 1154.
doi: 10.1001/jamainternmed.2020.3313
30 Shu T , Ning W , Wu D , et al. Plasma proteomics identify biomarkers and pathogenesis of COVID-19[J]. Immunity, 2020, 53 (5): 1108- 1122.e5.
doi: 10.1016/j.immuni.2020.10.008
31 Regn M , Laggerbauer B , Jentzsch C , et al. Peptidase inhibitor 16 is a membrane-tethered regulator of chemerin processing in the myocardium[J]. J Mol Cell Cardiol, 2016, 99, 57- 64.
doi: 10.1016/j.yjmcc.2016.08.010
32 Wu D , Shu T , Yang X , et al. Plasma metabolomic and lipidomic alterations associated with COVID-19[J]. Natl Sci Rev, 2020, 7, 1157- 1168.
doi: 10.1101/2020.04.05.20053819
33 Shen B , Yi X , Sun Y , et al. Proteomic and metabolomic characterization of COVID-19 patient sera[J]. Cell, 2020, 182 (1): 59- 72.e15.
doi: 10.1016/j.cell.2020.05.032
34 Ranucci M , Ballotta A , Dadda UD , et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome[J]. J Thromb Haemost, 2020, 18 (7): 1747- 1751.
doi: 10.1111/jth.14854
35 Xu Z , Shi L , Wang Y , et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. Lancet Respir Med, 2020, 8 (4): 420- 422.
doi: 10.1016/S2213-2600(20)30076-X
36 Wang N , Zhang Y , Zhu L , et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients[J]. Cell Host Microbe, 2020, 28 (3): 455- 464.e2.
doi: 10.1016/j.chom.2020.07.005
37 Zhou Q , Chen V , Shannon CP , et al. Interferon-α2b treatment for COVID-19[J]. Front Immunol, 2020, 11, 1061.
doi: 10.3389/fimmu.2020.01061
38 Zhou Y , Fu B , Zheng X , et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients[J]. Natl Sci Rev, 2020, 7 (6): 998- 1002.
doi: 10.1093/nsr/nwaa041
39 Zhou Y , Wei H . Tocilizumab is recommended for the treatment of severe COVID-19[J]. EBioMedicine, 2020, 61, 103045.
doi: 10.1016/j.ebiom.2020.103045
40 Xu X , Han M , Li T , et al. Effective treatment of severe COVID-19 patients with tocilizumab[J]. Proc Natl Acad Sci U S A, 2020, 117 (20): 10970- 10975.
doi: 10.1073/pnas.2005615117
41 Guo C , Li B , Ma H , et al. Single-cell analysis of two severe COVID-19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm[J]. Nat Commun, 2020, 11 (1): 3924.
doi: 10.1038/s41467-020-17834-w
42 Wang J , Jiang M , Chen X , et al. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts[J]. J Leukoc Biol, 2020, 108 (1): 17- 41.
doi: 10.1002/JLB.3COVR0520-272R
43 Bengtsson AA , Sturfelt G , Lood C , et al. Pharmacokinetics, tolerability, and preliminary efficacy of paquinimod (ABR-215757), a new quinoline-3-carboxamide derivative: studies in lupus-prone mice and a multicenter, randomized, double-blind, placebo-controlled, repeat-dose, dose-ranging study in patients with systemic lupus erythematosus[J]. Arthritis Rheum, 2012, 64 (5): 1579- 1588.
doi: 10.1002/art.33493
44 Bjrk P , Bjrk A , Vogl T , et al. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides[J]. PLoS Biol, 2009, 7 (4): e97.
doi: 10.1371/journal.pbio.1000097
45 Guo QR , Zhao YC , Li JH , et al. Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19[J]. Cell Host Microbe, 2021, 29 (2): 222- 235.e4.
doi: 10.1016/j.chom.2020.12.016
[1] 董宏杰,张俊梅,王帅,王宏伟,张坤迪,胡玮,谢晓鸿,谢时灵,谷立川. 新型冠状病毒混合样品检测研究[J]. 山东大学学报 (医学版), 2021, 59(4): 1-5.
[2] 于莹,张功,刘晶,颜世童,韩涛,黄海量. 基于网络药理学和分子对接方法探析黄芪预防新型冠状病毒肺炎的潜在作用机制[J]. 山东大学学报 (医学版), 2021, 59(4): 6-16.
[3] 闵傲雪,朱天瑞,张凤,王冉冉,李晓红. A151对糖氧剥夺和脂多糖诱导的BV-2细胞极化的影响[J]. 山东大学学报 (医学版), 2021, 59(3): 1-9.
[4] 任敏敏,王广梅,张丽,杨瑶瑶,封丹珺. 335名抗疫一线护理人员心理弹性对共情疲劳的影响[J]. 山东大学学报 (医学版), 2021, 59(2): 88-94.
[5] 余雪源,张硕,燕芳芳,苏德振. 采用清肺排毒汤联合西药43例与单用西药46例的新型冠状病毒肺炎临床疗效比较[J]. 山东大学学报 (医学版), 2020, 58(12): 47-53.
[6] 牛占丛,王彦霞,王晓亚,王晓庆,李亚轻,边竞. 新型冠状病毒肺炎2例报告[J]. 山东大学学报 (医学版), 2020, 58(10): 134-136.
[7] 李秀君,李新楼,刘昆,赵晓波,马盟,孙博. 地理信息系统在新型冠状病毒肺炎疫情防控中的应用进展述评[J]. 山东大学学报 (医学版), 2020, 58(10): 13-19.
[8] 徐丽君, 刘文辉, 刘远, 李美霞, 罗雷, 欧春泉. SEIQCR传染病模型的构建及在广州市新型冠状病毒肺炎公共卫生防控效果评估中的应用[J]. 山东大学学报 (医学版), 2020, 58(10): 20-24.
[9] 金新叶,卢珍珍,丁中兴,陈峰,彭志行. 武汉交通管制和集中隔离对新型冠状病毒肺炎疫情影响的动力学模型研究[J]. 山东大学学报 (医学版), 2020, 58(10): 25-31.
[10] 朱雨辰,李春雨,齐畅,王莹,刘利利,张丹丹,王旭,康殿民,李秀君. 基于泊松过程的山东省新型冠状病毒肺炎的再生数估计及流行动态分析[J]. 山东大学学报 (医学版), 2020, 58(10): 32-37.
[11] 李春雨,朱雨辰,齐畅,刘利利,张丹丹,王旭,徐学利,李秀君. 河南省信阳市新型冠状病毒肺炎的流行动态[J]. 山东大学学报 (医学版), 2020, 58(10): 38-43.
[12] 佘凯丽,张丹丹,齐畅,刘廷轩,贾艳,朱雨辰,李春雨,刘利利,王旭,苏虹,李秀君. 安徽省新型冠状病毒肺炎流行病学特征及其潜伏期估计[J]. 山东大学学报 (医学版), 2020, 58(10): 44-52.
[13] 齐畅,朱雨辰,李春雨,刘利利,张丹丹,王旭,佘凯丽,陈鸣,康殿民,李秀君. 基于地理加权广义线性模型探索山东省新型冠状病毒肺炎的影响因素[J]. 山东大学学报 (医学版), 2020, 58(10): 53-59.
[14] 贾艳,李春雨,刘利利,佘凯丽,刘廷轩,朱雨辰,齐畅,张丹丹,王旭,陈恩富,李秀君. 浙江省新型冠状病毒肺炎的流行特征与空间分析[J]. 山东大学学报 (医学版), 2020, 58(10): 66-73.
[15] 刘廷轩,齐畅,佘凯丽,贾艳,朱雨辰,李春雨,刘利利,王旭,章志华,李秀君. 河北省新型冠状病毒肺炎流行特征与时空聚集性分析[J]. 山东大学学报 (医学版), 2020, 58(10): 74-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[2] 李松林,刘培来,卢群山,马贺然. 胫骨高位截骨术联合自体脂肪间充质干细胞注射在膝关节软骨修复中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 82 -88 .
[3] 路璐,孙志钢,张楠. 继发性嗜血细胞综合征1例[J]. 山东大学学报 (医学版), 2020, 1(7): 122 -124 .
[4] 赵继宗. 神经外科学是脑科学研究的一支主力军[J]. 山东大学学报 (医学版), 2020, 1(8): 1 -4 .
[5] 江涛. 类脑智能在脑科学的前沿应用[J]. 山东大学学报 (医学版), 2020, 1(8): 10 -13 .
[6] 刘琚,吴强,于璐跃,林枫茗. 基于深度学习的脑肿瘤图像分割[J]. 山东大学学报 (医学版), 2020, 1(8): 42 -49, 73 .
[7] 吴强,何泽鲲,刘琚,崔晓萌,孙双,石伟. 基于机器学习的脑胶质瘤多模态影像分析[J]. 山东大学学报 (医学版), 2020, 1(8): 81 -87 .
[8] 王会,程莲,徐淑军. 内镜下两种入路232例垂体瘤切除术对嗅觉功能影响的临床观察[J]. 山东大学学报 (医学版), 2020, 1(8): 95 -100 .
[9] 张雅歌,韩佳瑞,石秀杰,彭紫凝,邢玉凤,庞欣欣. Ⅳ型肾小管酸中毒合并高醛固酮血症1例报告[J]. 山东大学学报 (医学版), 2020, 1(8): 123 -124 .
[10] 鹿子龙, 付振涛,杜恩情,徐春晓,张吉玉,楚洁,张丙银,吴炳义,郭晓雷. 2018年山东省成人自报健康预期寿命测算研究[J]. 山东大学学报 (医学版), 2020, 1(9): 83 -88 .